@phdthesis{Erk2018, author = {Erk, Christine}, title = {Metabolismus und Reaktivit{\"a}tsstudien neuer Arzneistoffe mittels LC-MS/MS-Methoden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung des Metabolismus sowie der Reaktivit{\"a}t verschiedener Wirk- und Arzneistoffe mittels fl{\"u}ssigchromatographischer und massen-spektrometrischer Methoden, sie gliedert sich dabei in vier Projekte. Zur Bestimmung des Metabolitenprofils wurde ein passendes In-vitro-Inkubationssystem mit Cytochrom-P-450-Systemen entwickelt. So wurden der Metabolismus und die Pharmakokinetik der Mip-Inhibitoren SF110, SF235 und SF354 gegen Legionellen, sowie neuer antitrypanosomaler Verbindungen MB209, MB343 und MB444 und von Daptomycin bestimmt. Dar{\"u}ber hinaus wurde die antibakterielle Aktivit{\"a}t des Daptomycins gegen{\"u}ber einem unbekannten Staphylokokkus-Stammes S. sciuri ermittelt. Außerdem wurden Reaktivit{\"a}tsuntersuchungen neu synthetisierter Inhibitoren gegen Tuberkulose und S. aureus durchgef{\"u}hrt. Die untersuchten Mip-Inhibitoren lieferten ein Metabolitenprofil, welches durch Ester- und Amidhydrolysen sowie Hydroxylierungen gepr{\"a}gt wurde. Die Verbindung SF110 schien dabei bereits eine gewisse Instabilit{\"a}t der Esterbindung aufzuweisen, da auch im Blindwert entsprechende Spaltprodukte identifiziert werden konnten. Die Hauptmetabolite von SF235 und SF354 bildeten sich durch unterschiedliche Hydrolysen, da die Spaltung des Molek{\"u}ls von den jeweiligen Substituenten abh{\"a}ngig ist. Innerhalb dieser Substanzklasse dominiert die mikrosomale Enzymkatalyse, da der gr{\"o}ßte metabolische Umsatz sowie die meisten Metabolite mittels mikrosomaler Fraktion des Menschen bzw. der Maus gefunden wurden. Die Klasse der Mip-Inhibitoren wird somit vor allem durch Cytochrom-P-450-Enzyme umgesetzt, wobei die Hydrophilie durch Einf{\"u}hrung polarer OH-Gruppen der Molek{\"u}le erh{\"o}ht wird. Die Hydroxylierung scheint dabei positionsspezifisch, bedingt durch sterische Hinderungen oder dirigierende Einfl{\"u}sse, abzulaufen. Stabilit{\"a}tsvergleiche zwischen SF110, SF235 und SF354 zeigten, dass die Einf{\"u}hrung einer Amidbindung anstelle der korrespondierenden Esterbindung die Substanzklasse maßgeblich metabolisch stabilisiert. Im Rahmen des murinen In-vivo-Metabolismus wurde beobachtet, dass SF235 einem deutlich st{\"a}rkeren Metabolismus unterlag als SF354 und sich der Metabolismus vor allem innerhalb der ersten 30 min vollzog. Demgegen{\"u}ber zeigten die In-vitro-Ergebnisse gegenteilige Ergebnisse, bei denen SF354 die am st{\"a}rksten metabolisierte Substanz war. Diese widerspr{\"u}chlichen Ergebnisse deuten darauf hin, dass In-vitro-Modelle nur als Anhaltspunkt verwendet werden sollten, um m{\"o}gliche Trends abzuleiten. Metabolismusstudien der Chinolonamide, die gegen die afrikanische Schlafkrankheit wirken sollen, veranschaulichten, dass die gr{\"o}ßte enzymatische Umsetzung aller drei getesteten Verbindungen mittels cytosolischer Fraktion erfolgte. Die Enzymreaktionen werden vermutlich durch ALDH bzw. MAO dominiert und nicht durch CYP bzw. FMO. Die gebildeten Metabolite in den verschiedenen Fraktionen unterlagen (ω-1)-Oxidationen, N-Desalkylierungen, Amidhydrolysen und aromatischen Hydroxylierungen. Auffallend war, dass eine Hydroxylierung am aromatischen Benzylring nur erfolgen konnte, sofern der Benzylaromat keinen Fluorsubstitutenten trug, da dieser desaktivierend wirkte. Die aromatische Hydroxylierung am Chinolonamid erfolgte dagegen bei allen drei Substanzen. Es wurde somit lediglich eine Hydroxylierung am Benzylring von MB343 festgestellt. Die enzymatische Aktivit{\"a}t aller Substanzen folgte einer Reaktionskinetik 1. Ordnung. Die unterschiedlichen Stabilit{\"a}ten der Substanzen zeigten einen deutlichen Trend: MB209 wurde, da es die instabilste Verbindung darstellt, im gr{\"o}ßten Maße umgesetzt, gefolgt von den stabileren Derivaten MB343 und MB444. Die Untersuchung der enzymatischen Aktivit{\"a}ten zeigte, dass die drei Substanzen, verglichen mit der Leitstruktur GHQ168, eine um den Faktor zehn geringere Aktivit{\"a}t aufwiesen [19]. Aufgrund der eingef{\"u}hrten Fluoratome weisen die Substanzen somit eine wesentlich h{\"o}here Stabilit{\"a}t auf. Diese Ergebnisse wurden durch die Untersuchung der Halbwertszeit best{\"a}tigt, bei der MB444 den h{\"o}chsten Wert besaß. Weiterhin ist die Position des Fluorsubstituenten am Chinolonger{\"u}st ausschlaggebend f{\"u}r die metabolische Stabilit{\"a}t, wobei MB444 aufgrund des para-Fluorsubstituenten am Chinolonamid die stabilste Verbindung darstellt. Durch Inkubation von Daptomycin mit unterschiedlichen S. sciuri-Isolaten wurde ein m{\"o}glicher Inaktivierungsmechanismus beobachtet, bei dem das Antibiotikum durch Spaltung des cyclischen Aminos{\"a}ureringes, durch Deacylierung des Fetts{\"a}ureschwanzes, einer Kombination beider Mechanismen oder durch eine Spaltung des heteroaromatischen Ringsystems von Tryptophan inaktiviert wurde. Die Proteasen des Daptomycin-resistenten S. sciuri-Isolats TS92 f{\"u}hrten zu einem Daptomycinabbau von 35 \%, unabh{\"a}ngig von der eingesetzten Menge des Arzneistoffes. Das Ausmaß des Abbaus scheint dar{\"u}ber hinaus vom eingesetzten Inkubationsmedium abh{\"a}ngig zu sein, da die Proteasen voraussichtlich auf ein bestimmtes N{\"a}hrmedium angewiesen sind. Der sensitive S. sciuri-Stamm TS93 lieferte die h{\"o}chste Abbaurate an Daptomycin mit 55 \% und widerlegt damit die Vermutung, dass Daptomycin die geringste antibakterielle Aktivit{\"a}t gegen{\"u}ber diesem S. sciuri-Stamm aufweist. Im In-vitro-Metabolismus zeigte Daptomycin insgesamt eine sehr geringe Umsetzungsmenge mit maximal 5 \% nach 4 h und einer geringen Metabolitenbildung. Hier wurde nur ein Metabolit gefunden, welcher auch mittels S. sciuri-Inkubation identifiziert wurde. Dieser Mechanismus k{\"o}nnte somit auf anderem Wege verlaufen. Die Reaktivit{\"a}tsstudien der kovalenten Inhibitoren der FadA5-Thiolase gegen Tuberkulose zeigten, dass nur die Verbindungen C1 und C4 eine Reaktivit{\"a}t gegen{\"u}ber der Aminos{\"a}ure Cystein93 im aktiven Zentrum besaßen, die somit f{\"u}r den gew{\"u}nschten Einsatzzweck geeignet sein k{\"o}nnten. Weiterhin wurde bei den kovalenten Inhibitoren der Enoyl-ACP-Reduktase mit dem Enzym FabI, welches im aktiven Zentrum ein Tyrosin besitzt, keine Reaktion festgestellt, da keine Addukte identifiziert wurden. Dies ist vermutlich auf die Unl{\"o}slichkeit im verwendeten TRIS-Puffer zur{\"u}ckzuf{\"u}hren.}, subject = {Biotransformation}, language = {de} } @phdthesis{Bank2014, author = {Bank, Stephanie}, title = {LC-ESI und MALDI-Massenspektrometrische Analyse nativer und derivatisierter Zucker und Glykane}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Glykane sind weitverbreitete Biomolek{\"u}le, die meist in Form von Glykokonjugaten, wie beispielsweise als Glykoproteine oder Glykolipide, vorliegen. Durch die Interaktion von Glykanen mit Glykan-bindenden Proteinen wird eine Vielzahl an biochemischen Prozessen ausgel{\"o}st, sowohl physiologischer, als auch pathologischer Art. Die Aufkl{\"a}rung der beteiligten Glykanstrukturen ist daher nicht nur wichtig f{\"u}r das Verst{\"a}ndnis dieser Prozesse, sondern kann auch Hinweise auf verschiedene Erkrankungen geben. Die Identifizierung von Glykanstrukturen kann {\"u}ber verschiedene Wege erfolgen. In der instrumentellen Analytik spielt dabei vor allem die ESI- und MALDI Massenspektrometrie eine wichtige Rolle, da diese sowohl f{\"u}r Detektion, als auch Fragmentierung großer Biomolek{\"u}le geeignet sind. Um die Analyse von Zuckern mittels chromatographischer und massenspektrometrischer Methoden zu erleichtern, werden h{\"a}ufig Derivatisierungsreagenzien eingesetzt. Diese verringern die Polarit{\"a}t der Zucker und erleichtern die Detektion durch das Einbringen von Chromo- oder Fluorophoren. Zur Derivatisierung am reduzierenden Terminus von Glykanen und Zuckern eignen sich vor allem Aminierungsreagenzien oder Hydrazide. Hydrazide haben gegen{\"u}ber anderen Derivatisierungsreagenzien den Vorteil einer einfachen, salzfreien Umsetzung, aus der ein stabiles Derivat mit geschlossenem terminalen Zuckerring hervorgeht. F{\"u}r die vorliegende Arbeit wurde die Derivatisierung mit den neuen Hydrazid Reagenzien INH und BINH, sowie dem bereits von Dr. P. Kapkov{\´a} bearbeiteten BACH untersucht. Als Vergleich dienten die underivatisierten Kohlenhydrate, wie auch das standardm{\"a}ßig eingesetzte Aminierungsreagenz 2-AB. Dabei sollte das Ver-halten verschiedener Zucker und Glykane in Bezug auf chromatographische Trennung, Signalintensit{\"a}t und Fragmentierung analysiert werden. Zun{\"a}chst wurde die Umsetzung von Mono-, Di- und Trisacchariden mit den neuen Derivatisierungsreagenzien INH und BINH optimiert. Dadurch konnte bei beiden Substanzen die komplette Umsetzung der Zucker in ihre Derivate gew{\"a}hrleistet werden. Auch die Derivatisierung mit Hilfe der Mikrowelle konnte bei INH erfolgreich durchgef{\"u}hrt werden. Auf diese Weise ließ sich die Reaktionszeit, im Vergleich zu den im Thermo-mixer® ben{\"o}tigten 90 Minuten, auf 20 Minuten verk{\"u}rzen. Aufgrund der großen Men-gen an Zucker und Derivatisierungsreagenz, die f{\"u}r die Umsetzung in der Mikrowelle n{\"o}tig sind, war der Versuch jedoch nur f{\"u}r INH geeignet. Im n{\"a}chsten Schritt wurde das Trennverhalten der verschiedenen Mono-, Di- und Tri-saccharid-Derivate auf RP-C18- und HILIC-Phasen untersucht. Bei den Monosaccha-riden konnte durch keines der Derivate eine vollst{\"a}ndige Trennung auf einer der Pha-sen erreicht werden. Das beste Ergebnis wurde durch INH auf der HILIC-S{\"a}ule erzielt, doch auch dort konnten die Epimere Glucose, Mannose und Galactose nicht vollst{\"a}n-dig separiert werden. Die Trennung der Disaccharide Maltose, Cellobiose und Lactose konnte auf der HILIC-Phase mit allen Derivaten außer BACH erfolgreich durchgef{\"u}hrt werden, auf der RP-C18 erwies sich dagegen nur 2-AB als geeignet. Bei den Trisac-chariden 3'SLN und 6'SLN konnten sowohl underivatisierte Zucker, als auch s{\"a}mtliche Derivate mittels HILIC getrennt werden. Auch auf der C18-Phase war eine Trennung der BINH, BACH und 2-AB-Derivate m{\"o}glich. Des Weiteren konnte durch die Derivati-sierungen die Signalintensit{\"a}t gegen{\"u}ber den underivatisierten Zuckern deutlich gesteigert werden. Nach ihrer Trennung lassen sich massegleiche Di- und Trisaccharide anhand des Fragmentierungsmusters unterscheiden. W{\"a}hrend bei den underivatisierten Disaccha-riden Maltose, Cellobiose und Lactose die charakteristischen Fragmente nur schwach sichtbar waren, konnte mit Hilfe der Hydrazide INH, BINH und BACH die Differenzie-rung deutlich erleichtert werden. Die 2-AB-Derivatisierung zeigte dagegen keine Ver-besserung der Fragmentierungseigenschaften. Bei der Unterscheidung der Trisaccharide 3'SLN und 6'SLN waren ebenfalls sowohl underivatisierte, als auch Hydrazid-derivatisierte Zucker im Vorteil gegen{\"u}ber den 2-AB-Derivaten. Die Derivatisierung der N-Glykane von Ribonuclease B und Ovalbumin f{\"u}hrte bei der Analyse mittels MALDI-TOF zu einer deutlichen Steigerung der Sensitivit{\"a}t. Beispiels-weise ließen sich bei den Glykanen des Ovalbumins durch die Derivatisierungen drei zus{\"a}tzliche Strukturen im Vergleich zu den nativen Glykanen detektieren. Auch das Fragmentierungsverhalten der Glykane am MALDI-TOF/TOF konnte mit Hilfe der Derivatisierungen erheblich verbessert werden. Besonders die Umsetzung mit BINH f{\"u}hrte zu einer Vielzahl charakteristischer Ringfragmente, wodurch die Aufkl{\"a}rung der verschiedenen Glykanstrukturen deutlich vereinfacht wurde. Auch im Vergleich zu 2 AB zeigten die Hydrazid-Derivate sowohl bessere Fragmentierungseigenschaften, als auch eine einfachere Handhabung f{\"u}r die Messung mittels MALDI-MS. Eine weitere M{\"o}glichkeit zur Identifikation von Glykanstrukturen liegt in der spezifischen Bindung durch Lektine. Diese Untersuchung gibt des Weiteren auch einen Hinweis auf funktionelle Eigenschaften der Glykane. Daf{\"u}r wird die hohe Affinit{\"a}t von Biotin-haltigen Derivatisierungsreagenzien zu Avidin und Streptavidin genutzt. Nach der auf diese Weise erfolgten Immobilisierung der Glykane k{\"o}nnen diese mittels spezifischer Lektine nachgewiesen werden. Die Eignung des neuen Derivatisierungsreagen-zes BINH f{\"u}r diese Zwecke wurde anhand eines Glykan-Arrays getestet. Dadurch ließ sich best{\"a}tigen, dass BINH-derivatisierte Glykane und Zucker sowohl in der Lage sind an Streptavidin zu binden, als auch durch Lektine nachgewiesen werden k{\"o}nnen. Daher kann davon ausgegangen werden, dass BINH grunds{\"a}tzlich f{\"u}r den Einsatz in bio-chemischen Methoden geeignet ist. Zusammenfassend l{\"a}sst sich sagen, dass die Derivatisierung von Kohlenhydraten mit INH, BINH und BACH zu einer deutlichen Verbesserung der Trenn- und Fragmentierungseigenschaften f{\"u}hrten. Dadurch konnten Identifizierung und Strukturanalyse sowohl von kleinen Zuckern, als auch von Glykanen erleichtert werden. Im Vergleich zu dem Standard-Derivatisierungsreagenz 2-AB zeigten die Hydrazide nicht nur im Bereich der Fragmentierungen, sondern auch durch die einfachere Derivatisierungsreaktion wesentliche Vorteile.}, subject = {MALDI-MS}, language = {de} }