@phdthesis{Hoehne2013, author = {H{\"o}hne, Christian}, title = {Das atriale natriuretische Peptid hemmt den vasokonstriktorischen Effekt von Angiotensin II in der Mikrozirkulation durch die Aktivierung des Regulators des G-Protein Signalweges 2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85229}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Ziel der vorliegenden Arbeit war es, die Interaktion von ANP und Ang II im Bereich der blutdruckbestimmenden Widerstandsgef{\"a}ße zu untersuchen. Ein besonderer Augenmerk wurde hierbei auch auf die Bedeutung von RGS2 gerichtet. Durch das Zusammenspiel der beiden funktionellen Antagonisten ANP und Ang II wird der Blutdruck reguliert. ANP und Ang II {\"u}ben hierbei jeweils gegenteilige Effekte aus. Ang II hat vasokonstriktorische Effekte auf die Blutgef{\"a}ße, vermindert die Natriurese und Diurese und erh{\"o}ht den Sympathikustonus. ANP hingegen besitzt blutdruckmindernde Effekte, hervorgerufen durch Vasodilatation, gesteigerte Diurese, die Erh{\"o}hung der endothelialen Durchl{\"a}ssigkeit und der Hemmung des Sympathikustonus. Da nichts {\"u}ber die Interaktion dieser beiden Hormone in der Mikrozirkulation bekannt ist, wurden im Rahmen der Dissertation intravitalmikroskopische Studien der Mikrozirkulation des Musculus cremaster der Maus, in Anlehnung an der von Baez (1973) publizierten Methode, durchgef{\"u}hrt. Dar{\"u}ber hinaus wurden auch die Effekte von Ang II und ANP auf den Blutdruck durch invasive Blutdruckmessung untersucht. Der Durchmesser von pr{\"a}kapill{\"a}ren Arteriolen des M. cremaster wurde vor und w{\"a}hrend lokaler Superfusion von Ang II oder ANP gemessen. Ang II l{\"o}ste eine konzentrationsabh{\"a}ngige stabile Konstriktion aus. Bei der ausschließlichen Superfusion von ANP in verschiedenen Konzentrationen hingegen, zeigte sich kein Effekt auf den basalen Vasotonus. ANP war jedoch in der Lage, an Ang II vorkontrahierten Arteriolen, den konstriktorischen Effekt von Ang II aufzuheben und sogar dar{\"u}ber hinaus eine ausgepr{\"a}gte Vasodilatation zu bewirken. Dieser Effekt konnte auch bei der invasiven Messung des mittleren arteriellen Blutdrucks nachgewiesen werden. Der durch Ang II ausgel{\"o}ste Blutdruckanstieg wurde durch die zus{\"a}tzliche Infusion von ANP gemindert. Ang II aktiviert die Kontraktion von glatten Gef{\"a}ßmuskelzellen durch den Gαq-gekoppelten AT1-Rezeptor. RGS2 hingegen ist ein negativer Regulator von Gαq. Da von RGS2 bekannt ist, dass er von cGKI phosphoryliert und stimuliert wird (Osei-Owusu et al., 2007), stellte sich die Frage, ob ANP {\"u}ber RGS2 dem vasokonstriktiven Effekt von Ang II entgegenwirkt. Bei den Versuchen an RGS2-KO M{\"a}usen zeigt sich hierbei, dass ANP nicht mehr in der Lage ist, den vasokonstriktiven Effekt von Ang II aufzuheben. Daraus ist nun der Schluss zu ziehen, dass RGS2 eine bedeutende Rolle f{\"u}r die Wechselwirkung zwischen ANP und Ang II in der Mikrozirkulation spielt und somit eine wichtige Aufgabe bei der Regulation des peripheren Widerstands und des Blutdrucks hat.}, subject = {ANP}, language = {de} } @phdthesis{Pollinger2012, author = {Pollinger, Thomas}, title = {Spatiotemporale Organisation der Interaktion von Gq Protein-Untereinheiten und der Phospholipase Cβ3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71884}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die G-Protein vermittelte Aktivierung der Phospholipase Cβ (PLCβ) stellt einen prim{\"a}ren Mechanismus dar, um eine Vielzahl von physiologischen Ereignissen zu regulieren, z.B. die Kontraktion glatter Muskelzellen, Sekretion oder die Modulation der synaptischen Transmission. Sowohl Gαq- als auch Gβγ-Untereinheiten sind daf{\"u}r bekannt mit PLCβ Enzymen zu interagieren und diese zu aktivieren. {\"U}ber die Dynamik dieser Interaktion und den relative Beitrag der G-Protein Untereinheiten ist jedoch nur wenig bekannt. Unter Verwendung Fluoreszenz Resonanz Energie Transfer (FRET)- basierter Methoden in lebenden Zellen, wurde die Kinetik der Rezeptor-induzierten Interaktion zwischen Gβγ und Gαq Untereinheiten, die Interaktion von sowohl der Gαq als auch der Gβγ-Untereinheit mit der PLCβ3 und die Interaktion des regulator of G-Protein signaling 2 (RGS2) mit Gαq-Untereinheiten untersucht. Um die Untersuchung der Protein-Protein-Interaktion auf die Zellmembran zu beschr{\"a}nken, wurde die Total-Internal Reflection Fluorescence (TIRF) Mikroskopie angewandt. Zeitlich hoch aufl{\"o}sendes, ratiometrisches FRET-Imaging offenbarte eine deutlich schnellere Dissoziation von Gαq und PLCβ3 nach Entzug purinerger Agonisten verglichen mit der Deaktivierung von Gq Proteinen in der Abwesenheit der PLCβ3. Dieser offensichtliche Unterschied in der Kinetik kann durch die GTPase-aktivierende Eigenschaft der PLCβ3 in lebenden Zellen erkl{\"a}rt werden. Weiterhin zeigte es sich, dass PLCβ3 die Gq Protein Kinetik in einem {\"a}hnlich Ausmaß beeinflusst wie RGS2, welches in vitro deutlich effizienter darin ist, die intrinsische GTPase Aktivit{\"a}t der Gαq-Untereinheit zu beschleunigen. Als Antwort auf die Rezeptorstimulation wurde sowohl eine Interaktion von Gαq-Untereinheiten als auch von Gq-abstammende Gβγ-Untereinheiten mit der PLCβ3 beobachtet. Dar{\"u}ber hinaus zeigte sich auch eine Agonist-abh{\"a}ngige Interaktion von Gαq und RGS2. In Abwesenheit einer Rezeptorstimulation konnte kein spezifisches FRET-Signal zwischen Gq Proteinen und der PLCβ3 oder RGS2 detektiert werden. Zusammengefasst erm{\"o}glichte das ratiometrische FRET-Imaging in der TIRF Mikroskopie neue Einsichten in die Dynamik und Interaktionsmuster des Gq-Signalwegs.}, subject = {TIRF}, language = {de} }