@phdthesis{Cao2020, author = {Cao, Victoria Xinghui}, title = {Stichkanalembolisation nach perkutaner transhepatischer Cholangiodrainage mittels Gelatineschwamm: Eine retrospektive Analyse}, doi = {10.25972/OPUS-21085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Durch die Anlage einer perkutanen transhepatischen Cholangiodrainage (PTCD), im Rahmen benigner und maligner bili{\"a}rer Obstruktionen, wird eine Kommunikation zwischen Hautoberfl{\"a}che, Peritoneum und dem bili{\"a}ren System geschaffen. Insbesondere nach Entfernung der PTCD besteht das Risiko einer Galleleckage, einer Blutung, einer biliokutanen Fistel oder einer lokalen Peritonitis, mit durchaus schwerwiegenden Konsequenzen. Die Embolisation dieses Stichkanals nach Entfernung der Drainage mittels Gelatineschwamm (Gelfoam) stellt eine einfache und effektive L{\"o}sung dar diese Komplikationen zu reduzieren und zu verhindern. Ziel dieser Studie war es, die Effektivit{\"a}t der Stichkanalembolisation mittels Gelatineschwamm nach PTCD retrospektiv zu evaluieren.}, subject = {Embolisation}, language = {de} } @phdthesis{Dietrich2024, author = {Dietrich, Philipp}, title = {Traveling Wave Magnetic Particle Imaging: Visuelle Stenosequantifizierung und Perkutane Transluminale Angioplastie im Gef{\"a}ßmodell}, doi = {10.25972/OPUS-35251}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Magnetic Particle Imaging (MPI) ist ein innovatives tomographisches Bildgebungs­verfahren, mit dem Tracerpartikel {\"a}ußerst sensitiv und schnell mehrdimensional abgebildet werden k{\"o}nnen. Die Methode basiert auf der nichtlinearen Magnetisierungs­antwort superparamagnetischer Eisenoxidnanopartikel (SPION) in einem Messpunkt, welcher ein Messvolumen rastert. In vorliegender Arbeit wurde das sog. Traveling Wave MPI (TWMPI) Verfahren eingesetzt, wodurch im Vergleich zu konventionellen MPI-Scannern ein gr{\"o}ßeres Field of View (FOV) und eine geringere Latenz bis zur Bildanzeige erreicht werden konnte. TWMPI weist einige f{\"u}r medizinische Zwecke vielversprechende Eigenschaften auf: Es liefert zwei- und dreidimensionale Bildrekonstruktionen in Echtzeit mit hoher zeitlicher und r{\"a}umlicher Aufl{\"o}sung. Dabei ist die Bildgebung von Grund auf hintergrundfrei und erfordert keinerlei ionisierende Strahlung. Zudem ist die Technik {\"a}ußerst sensitiv und kann SPION-Tracer noch in mikromolaren Konzentrationen detektieren. Ziel dieser Arbeit war es daher zu untersuchen, inwiefern es mittels TWMPI m{\"o}glich ist, k{\"u}nstliche Stenosen im Gef{\"a}ßmodell visuell in Echtzeit darzustellen und quantitativ zu beurteilen sowie {\"u}berdies eine perkutane transluminale Angioplastie (PTA) im Gef{\"a}ßmodell unter TWMPI-Echtzeit-Bildgebung durchzuf{\"u}hren. Alle Experimente wurden in einem speziell angefertigten TWMPI-Scanner durchgef{\"u}hrt (JMU W{\"u}rzburg, Experimentelle Physik V (Biophysik), FOV: 65 x 29 x 29 mm³, Aufl{\"o}sung: ca. 1.5 - 2 mm). Die Lumen-Darstellungen erfolgten mittels des SPION-Tracers Ferucarbotran in einer Verd{\"u}nnung von 1 : 50 (entspr. 10 mmol [Fe]/l). Das PTA-Instrumentarium wurde mit eigens hergestelltem ferucarbotran­haltigem Lack (100 mmol [Fe]/l) markiert. F{\"u}r die verschiedenen Teilexperimente wurden den jeweiligen speziellen Anforderungen entsprechend mehrere Gef{\"a}ßmodelle handgefertigt. F{\"u}r die visuelle Stenosequantifizierung wurden f{\"u}nf starre Stenosephantome unterschiedlicher Stenosierung (0\%, 25\%, 50\%, 75\%, 100\%) aus Polyoxymethylen her­gestellt (l: 40 mm, ID: 8 mm). Die Gef{\"a}ßmodelle wurden mehrfach zentral im FOV platz­iert und das stenosierte Lumen mittels sog. Slice-Scanning Modus (SSM, Einzel­aufnahme inkl. 10 Mittelungen: 200 ms, Bildfrequenz: 5 Bilder pro Sekunde, Latenz: ca. 100 ms) als zweidimensionale Quasi-Projektionen abgebildet. Diese Aufnahmen (n = 80, 16 je Phantom) wurden mit einer ein­heitlichen Grauskalierung versehen und anschließend entsprechend den NASCET-Kriterien visuell ausgewertet. Alle achtzig Aufnahmen waren unabh{\"a}ngig vom Stenosegrad aufgrund einheitlicher Fensterung sowie konstanter Scannerparameter untereinander gut vergleichbar. Niedrig­gradige Stenosen konnten insgesamt genauer abgebildet werden als h{\"o}hergradige, was sich neben der subjektiven Bildqualit{\"a}t auch in geringeren Standardabweichungen zeigte (0\%: 3.70 \% ± 2.71, 25\%: 18.64 \% ± 1.84, 50\%: 52.82 \% ± 3.66, 75\%: 77.84 \% ± 14.77, 100\%: 100 \% ± 0). Mit zunehmendem Stenosegrad kam es vermehrt zu geometrischen Ver­zerrungen im Zentrum, sodass bei den 75\%-Stenosen eine breitere Streuung der Messwerte mit einer h{\"o}heren Standardabweichung von 14.77\% einherging. Leichte, randst{\"a}ndige Artefakte konnten bei allen Datens{\"a}tzen beobachtet werden. F{\"u}r die PTA wurden drei interaktive Gef{\"a}ßmodelle aus Polyvinylchlorid (l: 100 mm, ID: 8 mm) mit zu- und abf{\"u}hrendem Schlauchsystem entwickelt, welche mittels Kabelband von außen hochgradig eingeengt werden konnten. Analog zu einer konventionellen PTA mittels r{\"o}ntgenbasierter digitaler Subtraktionsangiographie (DSA), wurden alle erforder­lichen Arbeitsschritte (Gef{\"a}ßdarstellung, Drahtpassage, Ballonplatzierung, Angioplastie, Erfolgskontrolle) unter (TW)MPI-Echtzeit-Bildgebung (Framerate: 2 - 4 FPS, Latenz: ca. 100 ms) abgebildet bzw. durchgef{\"u}hrt. Im Rahmen der PTA war eine Echtzeit-Visualisierung der Stenose im Gef{\"a}ßmodell durch Tracer-Bolusgabe sowie die F{\"u}hrung des markierten Instrumentariums zum Zielort m{\"o}glich. Die Markierung der Instrumente hielt der Beanspruchung w{\"a}hrend der Prozedur stand und erm{\"o}glichte eine genaue Platzierung des Ballonkatheters. Die Stenose konnte mittels Angioplastie-Ballons unter Echtzeit-Darstellung gesprengt werden und der Interventionserfolg im Anschluss durch erneute Visualisierung des Lumens validiert werden. Insgesamt zeigt sich MPI somit als ad{\"a}quate Bildgebungstechnik f{\"u}r die beiden in der Fragestellung bzw. Zielsetzung definierten experimentellen Anwendungen. Stenosen im Gef{\"a}ßmodell konnten erfolgreich in Echtzeit visualisiert und bildmorphologisch nach NASCET-Kriterien quantifiziert werden. Ebenso war eine PTA im Gef{\"a}ßmodell unter TWMPI-Echtzeit-Bildgebung machbar. Diese Ergebnisse unter­streichen das grundlegende Potenzial von MPI f{\"u}r medizinische Zwecke. Um zu den bereits etablierten Bildgebungsmethoden aufzuschließen, ist jedoch weitere Forschung im Bereich der Scanner-Hard- und -Software sowie bez{\"u}glich SPION-Tracern n{\"o}tig.}, subject = {Medizinische Radiologie}, language = {de} }