@phdthesis{Kunkel2022, author = {Kunkel, Pascal Gerhard}, title = {Nahinfrarot-Ultrakurzzeitspektroskopie an einwandigen Kohlenstoffnanor{\"o}hren in dotierten D{\"u}nnfilmen und Polymermatrizen}, doi = {10.25972/OPUS-26900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Nanor{\"o}hren, die auf dem Element Kohlenstoff basieren, besitzen ein großes Potential f{\"u}r ihre Anwendung als neuartige und nachhaltige Materialien im Bereich der Optoelektronik und weiteren zukunftsweisenden Technologiefeldern. Um jedoch hierf{\"u}r genutzt werden zu k{\"o}nnen, ist ein tiefgreifendes Kenntnis {\"u}ber ihre außergew{\"o}hnlichen photophysikalischen Eigenschaften notwendig. Kohlenstoffnanor{\"o}hren sind als eindimensionale Halbleiter sehr vielseitige Materialien. Jedoch ist der Zusammenhang zwischen ihrer Eignung als Halbleiter und der daf{\"u}r notwendigen Dotierung nur sehr unzureichend verstanden. Die Ziele der vorliegenden Dissertation waren deshalb, ein grundlegendes Verst{\"a}ndnis der photophysikalischen Energietransferprozesse in Nanor{\"o}hren zu erlangen und den Einfluss von gezielten Dotierungen auf diese Prozesse im Hinblick auf ihre Eigenschaften als eindimensionale Halbleiter detailliert zu untersuchen. Die Grundlage f{\"u}r die Experimente bildeten verschiedene Filme aus einwandigen (6,5)-Kohlenstoffnanor{\"o}hren, die durch ein Polyfluoren-Copolymer in einer organischen L{\"o}sungsmittelumgebung isoliert wurden. Mit Hilfe der Ultrakurzzeitspektroskopie wurden die auf einer schnellen (ps-ns) Zeitskala ablaufenden photophysikalischen Prozesse an diesen Filmen unter verschiedenen Bedingungen untersucht und analysiert. In Kapitel 4 wurde der generelle Energietransfer der Kohlenstoffnanor{\"o}hren in Polymermatrizen im Detail studiert. Hierbei wurden durch Simulationen theoretische dreidimensionale Verteilungen von Kohlenstoffnanor{\"o}hren erzeugt und die nach einem Energietransfer vorliegenden Polarisationsanisotropien berechnet. Verschiedene Berechnungsans{\"a}tze ergaben, dass die Nanorohrdichte ϱSWCNT f{\"u}r ein Massen{\"u}berschuss X der Matrix nahezu unabh{\"a}ngig von dem R{\"o}hrenvolumen war und durch ϱSWCNT = X-1 · 40 000 μm-1 angen{\"a}hert werden konnte. Die Simulationen lieferten von der R{\"o}hrendichte abh{\"a}ngige Gaußverteilungen der zwischen den Nanor{\"o}hren vorliegenden Abst{\"a}nden. Aus den Verteilungen konnte weiterhin der Anteil an R{\"o}hren bestimmt werden, die f{\"u}r einen Energietransfer zur Verf{\"u}gung stehen. Weitere Simulationen von Nanorohrverteilungen lieferten die Polarisationsanisotropie in Abh{\"a}ngigkeit von der Anzahl an durchgef{\"u}hrten Energietransferschritten. Die Ergebnisse aus den Simulationen wurden zur Interpretation der Ultrakurzzeitmessungen angewandt. Hierbei wurden durch die Variation der Polymermatrix die zwischen den Nanor{\"o}hren vorliegenden Abst{\"a}nde ver{\"a}ndert und damit die Art und Intensit{\"a}t des Energietransfers kontrolliert. In Messungen der transienten Anisotropie zeigte sich, dass ein Exziton nach seiner Erzeugung zwei depolarisierende Energietransferschritte durchf{\"u}hrte. Die Zerfallsdynamiken des Exzitons gaben auch klare Hinweise auf weitere nicht depolarisierende Energietransferprozesse, die durch parallel zueinander stehende {\"U}bergangsdipolmomente erm{\"o}glicht wurden. Eine Erkl{\"a}rung f{\"u}r dieses Verhalten lieferte die faserige Struktur der Filme, die sich in Aufnahmen durch das Elektronenmikroskop zeigte. Das Kapitel 5 besch{\"a}ftigte sich mit dem Aufbau eines transienten Nahinfrarotspektrometers und den n{\"o}tigen experimentellen Umbauten zur Messung der transienten Absorption f{\"u}r energiearme Signale im Spektralbereich unterhalb von 1.4 eV. Hierzu wurde die Weißlichterzeugung f{\"u}r die Verwendung von Calciumfluorid umgebaut. Das erzeugte Weißlicht wurde in das aufgebaute Prismenspektrometer eingekoppelt, um es weitestgehend linear auf einer Energieskala zu dispergieren. Auf diese Weise wurden energiearme Spektralkomponenten nicht auf unverh{\"a}ltnism{\"a}ßig viele Pixel verteilt und konnten mit ausreichender Intensit{\"a}t detektiert werden. Die Lichtdetektion erfolgte mittels zweier Detektorzeilen aus Indiumgalliumarsenid, die das transiente Signal durch eine direkte Referenzierung stabilisierten. Weiterhin wurde in diesem Kapitel die Justage und die programmierte Ansteuerung des Systems detailliert beschrieben. Hierbei wurde auf die Justage der Einkopplung per Freistrahl, die Kalibrierung mittels Bandpassspektren sowie auf die Aufnahme von Weißlichtspektren und transienten Karten detailliert eingegangen. An Nanorohrdispersionen durchgef{\"u}hrten Testmessungen zeigten, dass das transiente Nahinfrarotspektrometer mit direkter Signalreferenzierung einwandfrei funktionierte und daher den beobachtbaren Spektralbereich auf den Bereich von Energien bis unterhalb von 1 eV erweiterte. Damit erm{\"o}glichte der Aufbau einen Zugang zu der Beobachtung gr{\"o}ßerer Nanorohrchiralit{\"a}ten sowie zu der Untersuchung von energiearmen, spektralen Signaturen von Nanorohrdefekten. In Kapitel 6 wurde das transiente Nahinfrarotspektrometer genutzt, um das zeitabh{\"a}ngige Verhalten von redoxchemisch p-dotierten Nanor{\"o}hren zu charakterisieren und quantitativ zu beschreiben. Hierzu wurden die spektralen Eigenschaften von SWCNT-D{\"u}nnfilmen als Funktion eines steigenden Dotierungsgrades durch die Messungen der transienten und linearen Absorption studiert. In der linearen Absorption im Bereich von 0.9 - 2.5 eV vereinfachte sich das Spektrum mit ansteigender Dotierung stark und verlor vor allem im Bereich des ersten Subbandes deutlich an Oszillatorst{\"a}rke. Bei starker Dotierung verschwanden die Signalbeitr{\"a}ge von X1 und der Phononenseitenbande. Weiterhin bleichte auch die bei mittleren Dotierungsgraden auftauchende Trionenabsorption aus und ging in die breite Absorptionsbande der H-Bande {\"u}ber. Das Erscheinen und Verschwinden der trionischen sowie exzitonischen Absorption war ebenfalls in der transienten Absorption durch zeitgleich auftretende/verschwindende Photobleichsignale zu erkennen. Sowohl der Zerfall des exzitonischen PB-Signals wie auch des Trions beschleunigte sich mit einer steigenden Dotierung. Die Zerfallszeit des Exzitons im undotierten Film betrug 6.87 ps und verk{\"u}rzte sich auf 0.732 ps bei h{\"o}heren Dotierungsgraden. Die Zerfallszeit des Photobleichens des Trions reduzierte sich von 2.02 ps auf 0.440 ps. Auffallend war hierbei, dass das Trion im Vergleich zu dem Exziton exponentiell zerfiel und damit auf eine Lokalisierung dieses Zustandes hinweist. Bei h{\"o}heren Dotierungsmittelkonzentrationen tauchte in der transienten Absorption ein neuer Signalbeitrag auf. Die Existenz dieses Signals konnte auf die H-Bande zur{\"u}ckgef{\"u}hrt werden und k{\"o}nnte auf einer Verschiebung des linearen Absorptionsspektrums aufgrund einer Renormalisierung der Bandl{\"u}cke oder der S{\"a}ttigung von Ladungstr{\"a}gern beruhen. Das Signal zeigte eine klare Abh{\"a}ngigkeit vom Dotierungsgrad des Nanorohrfilmes. So wies es eine hypsochrome Verschiebung auf, wurde spektral breiter und seine Zerfallsdauer reduzierte sich von 1.62 ps auf 0.520 ps mit steigendem Dotierungsgrad.}, subject = {Einwandige Kohlenstoff-Nanor{\"o}hre}, language = {de} } @phdthesis{Schilling2015, author = {Schilling, Daniel}, title = {Zur spektralen Diffusions- und Energietransferdynamik in halbleitenden einwandigen Kohlenstoffnanor{\"o}hren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122772}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Einwandige Kohlenstoffnanor{\"o}hren weisen aufgrund ihrer besonderen Struktur viele f{\"u}r ein rein kohlenstoffhaltiges Makromolek{\"u}l ungew{\"o}hnliche Eigenschaften auf. Dies macht sie sowohl f{\"u}r die Erforschung grundlegender Ph{\"a}nomene in eindimensionalen Nanostrukturen als auch f{\"u}r potenzielle Anwendungen {\"a}ußerst interessant. Da alle Atome einer SWNT Oberfl{\"a}chenatome sind, f{\"u}hrt dies zu einer besonders ausgepr{\"a}gten Empfindlichkeit ihrer elektronischen Eigenschaften auf Wechselwirkungen mit der Umgebung. Lokale zeitabh{\"a}ngige {\"A}nderungen in diesen Wechselwirkungen f{\"u}hren daher zu Ph{\"a}nomenen wie dem Photolumineszenz-Blinken und spektraler Diffusion. Die Erforschung und Kontrolle der Parameter, die f{\"u}r die Beeinflussung der elektronischen Eigenschaften von SWNTs durch Umgebungseinfl{\"u}sse entscheidend sind, wird neben der spezifischen Synthese eine maßgebliche Rolle dabei spielen, ob und in welcher Form SWNTs in optoelektronischen Bauteilen zuk{\"u}nftig Anwendung finden. Die vorliegende Arbeit liefert einen Beitrag zum Verst{\"a}ndnis dieser Wechselwirkungen, indem die Dynamik von Energietransferprozessen innerhalb von SWNTs und zwischen SWNTs untersucht wurde. Im Rahmen dieser Arbeit wurden homogene und inhomogene Beitr{\"a}ge zur Linienverbreiterung von in einer Matrix eingebetteten SWNTs bestimmt. Dabei wurde erstmals beobachtet, dass die spektrale Diffusion sowohl bei Raumtemperatur als auch bei 17 K auf einer ultraschnellen Zeitskala, d. h. innerhalb von weniger als 1 ps abl{\"a}uft. Mittels transienter Lochbrennspektroskopie konnte gezeigt werden, dass die homogene Linienbreite von (6,5)-SWNTs mit 3.6 meV nur den geringsten Beitrag zur Absorptionslinienbreite liefert, w{\"a}hrend die gr{\"o}ßte Verbreiterung mit mehr als 99 \% inhomogen ist. Die inhomogene Linienbreite wurde aus inkoh{\"a}renten 2D-Spektren, welche durch spektrale Lochbrennexperimente bei Variation der Anregungswellenl{\"a}nge erhalten werden konnten, zu \(54\pm5\)meV bestimmt. Die Dynamik der spektralen Diffusion wird mit einer Exzitonendiffusion in einer durch lokale Umgebungswechselwirkungen verursachten inhomogenen Energielandschaft entlang der Nanorohrachse erkl{\"a}rt. Durch zeitaufgel{\"o}ste Lochbrennexperimente unter nichtresonanter Anregung konnte gezeigt werden, dass die Populationsumverteilung innerhalb dieser Energielandschaft f{\"u}r eine energetisch abw{\"a}rts gerichtete Relaxation ein spontaner Prozess ist. Im umgekehrten Fall ist sie dagegen thermisch aktiviert. M{\"o}gliche Einfl{\"u}sse von Artefakten wurden anhand von Referenzmessungen diskutiert und die Bestimmung der homogenen Linienbreite durch komplement{\"a}re CW-Lochbrennexperimente erg{\"a}nzt. Durch Monte-Carlo-Simulationen konnten erstmals Informationen {\"u}ber die Form der Potenzialenergielandschaft entlang einer SWNT erhalten und die Gr{\"o}ßenordnung der Plateaubreite mit nahezu konstanter Energie innerhalb der Potenziallandschaft zu 5.8-18.2nm ermittelt werden. Dies gelang durch eine Kalibrierung der Simulationszeit anhand experimenteller transienter Absorptionsspektren. Im Rahmen dieses Modells wurde dar{\"u}ber hinaus die Zeit f{\"u}r einen Sprung zu einem benachbarten Gitterplatz der Energielandschaft zu 0.1 ps bestimmt. Inter- und intraband-Relaxationsprozesse von SWNTs wurden mittels Photolumineszenzspektroskopie untersucht. Die Ergebnisse deuten auf eine temperaturunabh{\"a}ngige Effizienz der internen Konversion und die photostimulierte Generierung von L{\"o}schzentren hin. Anhand temperaturabh{\"a}ngiger PL-Messungen, die erstmals bei Anregung des \(S_1\)-Zustands durchgef{\"u}hrt wurden, konnte die Energiedifferenz zwischen dem hellen und dunklen Exziton f{\"u}r (6,5)-SWNTs im Rahmen des Modells eines Dreiniveausystems zu \(\delta = (3.7\pm0.1)\)meV bestimmt werden. Aus der guten {\"U}bereinstimmung des temperaturabh{\"a}ngigen Trends der PL-Intensit{\"a}t unter \(S_1\)-Anregung mit in fr{\"u}heren Studien erhaltenen Ergebnissen unter \(S_2\)-Anregung konnte geschlussfolgert werden, dass die Effizienz der internen Konversion nicht ausgepr{\"a}gt temperaturabh{\"a}ngig ist. F{\"u}r SWNT-Gelfilme wurde unter \(S_2\)-Anregung eine deutliche Abweichung zur \(S_1\)-Anregung in Form eines Bleichens der Photolumineszenz beobachtet. Dieses Ph{\"a}nomen ist in der Literatur wenig diskutiert und wurde daher in leistungsabh{\"a}ngigen PL-Experimenten weiter untersucht. Dabei wurde f{\"u}r die \(S_2\)- im Vergleich zur \(S_1\)-Anregung eine st{\"a}rker ausgepr{\"a}gte sublineare Leistungsabh{\"a}ngigkeit gefunden. Die Abweichung vom linearen Zusammenhang der PL-Intensit{\"a}t mit der Leistung trat hier schon bei um eine Gr{\"o}ßenordnung geringeren Leistungsdichten auf als in fr{\"u}heren Studien und kann mit einer Exziton-Exziton-Annihilation allein nicht erkl{\"a}rt werden. M{\"o}glicherweise ist die {\"O}ffnung zus{\"a}tzlicher Zerfallskan{\"a}le durch metastabile L{\"o}schzentren f{\"u}r dieses Verhalten verantwortlich. Die PL-Experimente zeigten zudem ein zeitabh{\"a}ngiges irreversibles Bleichen unter \(S_2\)-Anregung, welches bei 30 K st{\"a}rker ausgepr{\"a}gt war als bei Raumtemperatur. Dessen Abh{\"a}ngigkeit von der eingestrahlten Photonenzahl l{\"a}sst auf eine Akkumulation von L{\"o}schzentren schließen. Daher wird eine m{\"o}gliche Redoxreaktion mit Wasser, ausgel{\"o}st durch die intrinsische p-Dotierung der SWNTs, als Quelle der L{\"o}schzentren diskutiert. Das Verzweigungsverh{\"a}ltnis f{\"u}r die Relaxation nach \(S_2\)-Anregung von SWNTs wurde in Form der relativen Quantenausbeute bestimmt und eine nahezu quantitative interne Konversion des \(S_2\)-Exzitons gefunden. Dieses Ergebnis hat eine wichtige Bedeutung f{\"u}r potenzielle Anwendungen von SWNTs in der Photovoltaik, da die Verluste durch die interband-Relaxation bei einer Anregung des zweiten Subband-Exzitons <3\% zu sein scheinen. Die Herausforderung des Experiments wird hier durch die geringe Stokes-Verschiebung von SWNTs verursacht, die eine quantitative Trennung von PL- und Streulicht unm{\"o}glich macht. Daher wurde ein Aufbau realisiert, in dem ein großer Teil des Streulichts bereits r{\"a}umlich entfernt wird und die PL unter \(S_1\)- bzw. \(S_2\)-Anregung quantifizierbar und ohne eine Annahme {\"u}ber Streulicht-Anteile direkt vergleichbar ist. Sowohl f{\"u}r SDS- als auch f{\"u}r Polymer-stabilisierte SWNTs wurde eine relative Quantenausbeute von \(\xi \approxeq 1\) erhalten, was eine nahezu quantitative interne Konversion von \(S_2\)- zu \(S_1\)-Exzitonen innerhalb der PL-Lebensdauer nahelegt. Anregungsenergietransferprozesse zwischen Kohlenstoffnanor{\"o}hren in mono- und bidispersen SWNT-Netzwerkfilmen definierter Zusammensetzung wurden mittels zeitaufgel{\"o}ster Polarisationsanisotropie untersucht. Dabei wurden neben einem ultraschnellen Energietransfer in weniger als 1 ps auch Hinweise auf Beitr{\"a}ge des \(S_2\)-Exzitons an diesem Prozess gefunden. Die Ergebnisse der Experimente mit bidispersen SWNT-Netzwerkfilmen best{\"a}tigen den auch in PLE-Spektren beobachteten energetisch abw{\"a}rts gerichteten Energietransfer von SWNTs mit großer zu solchen mit kleiner Bandl{\"u}cke und liefern dar{\"u}ber hinaus eine Zeitskala von weniger als 1 ps f{\"u}r diesen Prozess. Die umgekehrte Transferrichtung konnte weder aus dem \(S_1\)- noch aus dem \(S_2\)-Exziton beobachtet werden. Eine Beschleunigung der Anisotropiedynamik bei \(S_2\)- im Vergleich zu S\uu1-Anregung deutet auf einen Beitrag des \(S_2\)-Exzitons am Energietransferprozess in Konkurrenz zur internen Konversion hin. Durch Referenzexperimente mit monodispersen Netzwerkfilmen konnte eine Beteiligung von Energietransferprozessen zwischen SWNTs der gleichen Chiralit{\"a}t auf einer Zeitskala von 1-2ps nachgewiesen werden. Dadurch konnten Beobachtungen von zeitabh{\"a}ngigen Anisotropie{\"a}nderungen, die einen energetisch aufw{\"a}rts gerichteten Energietransfer suggerieren, mit einem intra-Spezies-Transfer erkl{\"a}rt werden - Hinweise auf energetisch aufw{\"a}rts gerichtete EET-Prozesse wurden nicht gefunden. Eine wichtige Erkenntnis aus diesen Experimenten ist die Tatsache, dass die {\"U}berlappung von Signalbeitr{\"a}gen zu einer Verf{\"a}lschung der Anisotropie und damit zu fehlerhaften Interpretationen f{\"u}hren kann. Dar{\"u}ber hinaus wurde auf den Einfluss der Probenheterogenit{\"a}t und der Alterung von SWNT-Netzwerkfilmen hingewiesen. Diese Untersuchungen legen nahe, dass ein effizienter Exzitonentransfer in SWNT-Netzwerkfilmen auch zwischen den einzelnen R{\"o}hrenstr{\"a}ngen erfolgen kann und es somit m{\"o}glich ist, die Effizienz entsprechender Solarzellen zu verbessern. Im letzten Teil der Arbeit wurden erstmals transiente Absorptionsexperimente im Femtosekundenbereich mit SWNTs unter \(Gate-Doping\) durchgef{\"u}hrt. In ersten Experimenten konnte gezeigt werden, dass analog zur chemischen Dotierung von SWNTs die Dynamik des \(S_1\)-Bleichens eines (6,5)-SWNT-Netzwerkfilms nach \(S_2\)-Anregung unter \(Gate-Doping\) eine Beschleunigung durch zus{\"a}tzliche Zerfallskan{\"a}le erf{\"a}hrt. Die elektrochemische Bandl{\"u}cke wurde f{\"u}r (6,5)-Nanor{\"o}hren zu 1.5 eV bestimmt. Eine Verringerung der Photoabsorptionsamplitude mit zunehmendem Potenzial l{\"a}sst Vermutungen {\"u}ber die Natur dieses in transienten Absorptionsexperimenten beobachteten PA-Merkmals in Form der Absorption einer dotierten SWNT-Spezies zu. Diese Untersuchungen liefern erste Einblicke in die Art und Weise, wie eine elektrochemische Modifizierung von SWNTs die elektronische Bandstruktur und Ladungstr{\"a}gerdynamik ver{\"a}ndert.}, subject = {Einwandige Kohlenstoff-Nanor{\"o}hre}, language = {de} }