@phdthesis{Ferraro2021, author = {Ferraro, Antonio}, title = {Entwicklung potenzieller (ir-)reversibler Inhibitoren der Enoyl-ACP-Reduktase FabI in S. aureus/ E. coli und der Thiolase FadA5 in M. tuberculosis}, doi = {10.25972/OPUS-23839}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238392}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Antimikrobielle Resistenzen stellen eine weltweite Herausforderung dar und sind mit einer hohen Morbidit{\"a}t und Mortalit{\"a}t verbunden. Die Letalit{\"a}tsrate durch multiresistente Keime steigt stetig an, weshalb die WHO im Jahr 2017 eine Priorit{\"a}tenliste resistenter Keime erstellte, die die Entwicklung neuer Antibiotika vorantreiben soll. Diese umfasst vornehmlich gramnegative Bakterien, da diese aufgrund ihres Zellaufbaus sowie diverser Resistenzmechanismen besonders widerstandsf{\"a}hig gegen{\"u}ber dem Angriff vieler Antibiotika sind. Einige grampositive Keime (z.B. S. aureus) stehen ebenfalls auf dieser Liste und stellen eine große Herausforderung f{\"u}r die Medizin dar. Infolgedessen ist die Entwicklung neuer Antiinfektiva mit neuen Angriffspunkten gegen resistente Pathogene zwingend n{\"o}tig, um mit bisherigen Resistenzen umgehen zu k{\"o}nnen. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Synthese von kovalent (reversibel) bindenden Inhibitoren der Enoyl-ACP-Reduktase FabI (Staphylococcus aureus, Escherichia coli) und der Thiolase FadA5 (Mycobacterium tuberculosis). Beide Enzyme sind essenziell f{\"u}r das {\"U}berleben des jeweiligen Bakteriums. FabI ist ein wichtiges und geschwindigkeitsbestimmendes Schl{\"u}sselenzym der Fetts{\"a}uresynthese Typ II diverser Bakterien. Hierbei werden wichtige Phospholipide hergestellt, die f{\"u}r den Aufbau der Zellmembran n{\"o}tig sind. Schiebel et al. ist es gelungen, einen potenten Inhibitor f{\"u}r den Erreger S. aureus sowie E. coli zu entwickeln und zu charakterisieren. Ausgehend von dieser Verbindung wurde eine Substanzbibliothek mit verschiedenen „warheads" hergestellt. Hierbei wurde die Verkn{\"u}pfung zwischen dem Pyridon-Grundger{\"u}st und der elektrophilen Gruppe sowie die {\"u}ber den Ether verkn{\"u}pften aromatischen Ringsysteme variiert. Diese Verbindungen wurden hinsichtlich ihrer inhibitorischen Aktivit{\"a}t am jeweiligen Enzym getestet. Anschließend wurde von Verbindung 32 und 33, die jeweils eine gute Inhibition des Enzyms aufweisen, der IC50-Wert gemessen. Beide Verbindungen weisen eine 50-prozentige Reduktion der Enzymaktivit{\"a}t im mittleren nanomolaren Bereich auf. Zus{\"a}tzlich wurde Verbindung 32 in einem sogenannten „jump-dilution"-Assay auf kovalente Inhibition getestet. Durch dieses Experiment konnte eine kovalente Inhibition des Enzyms ausgeschlossen werden. Die Reaktivit{\"a}t der eingesetzten „warheads" wurde gegen{\"u}ber einem Tripeptid mittels eines LC/MS-Iontrap-Systems bestimmt. Die untersuchten Verbindungen zeigten keine signifikante Reaktion mit der im Tripeptid eingebauten nukleophilen Aminos{\"a}ure Tyrosin, deren Nukleophilie bei dem pH-Wert des Tests (pH = 8.2 und 10.8) nicht hoch genug ist. Um einen Einblick in den Bindemodus der Verbindungen zu erhalten, wurden ferner Kristallisationsversuche durchgef{\"u}hrt. Die erhaltenen Kristallstrukturen zeigen, dass die Verbindungen mit dem gew{\"u}nschten Bindemodus am Zielenzym binden, aber eine kovalente Modifizierung des Tyrosins146 durch die eingesetzten „warheads" aufgrund der großen Entfernung (6 {\AA} zwischen elektrophiler Gruppe und Tyrosin146), unwahrscheinlich ist. Zus{\"a}tzlich wurden die physikochemischen Eigenschaften (Stabilit{\"a}t, Wasserl{\"o}slichkeit und logP) der Verbindung 32 sowie Verbindung 33 charakterisiert. M. tuberculosis ist der Erreger der global verbreiteten Infektionskrankheit Tuberkulose (TB), die zu den zehn h{\"a}ufigsten Todesursachen weltweit geh{\"o}rt. Das Bakterium kann das im menschlichen K{\"o}rper vorkommende Cholesterol metabolisieren und nutzt dessen Abbauprodukte als wichtige Kohlenstoffquelle. Die Thiolase FadA5 ist bei diesem Abbau ein wichtiges Enzym und konnte als potenzielles innovatives Target f{\"u}r neue Antibiotika definiert werden. Durch Dockingstudien konnten zwei potenzielle Leitstrukturen als Inhibitoren der Thiolase FadA5 identifiziert werden. Im Rahmen dieser Arbeit wurden die vorgeschlagenen Strukturen mit dem gew{\"u}nschten „warhead" synthetisiert und hinsichtlich ihrer inhibitorischen Aktivit{\"a}t gegen{\"u}ber dem Enzym untersucht. Die Zielverbindungen zeigen keine signifikante Hemmung sowie kovalente Bindung {\"u}ber die eingesetzten „warheads" an die Thiolase FadA5.}, subject = {Enoyl-acyl-carrier-protein-Reductase}, language = {de} }