@phdthesis{Kollert2015, author = {Kollert, Sina}, title = {Kaliumkan{\"a}le der K2P-Familie kontrollieren die Aktivit{\"a}t neuronaler Zellen - TRESK als Regulator inflammatorischer Hyperalgesie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Das Empfinden von Schmerz ist f{\"u}r uns {\"u}berlebenswichtig. Chronischer Schmerz hingegen hat seine physiologische Bedeutung verloren und wird als eigenes Krankheitsbild angesehen. Schmerzempfindung beginnt mit der Nozizeption. Die Zellk{\"o}rper nozizeptiver Neurone befinden sich in den Spinalganglien (Hinterwurzelganglion, dorsal root ganglion DRG) und Trigeminalganglien (TG). In den DRG-Neuronen macht der Zwei-Poren-Kaliumkanal (K2P) TRESK die Hauptkomponente eines Kaliumstromes, des „standing outward currents" IKSO, aus. Die physiologische Hauptaufgabe der TRESK-Kan{\"a}le liegt in der Regulation der zellul{\"a}ren Erregbarkeit nozizeptiver Neurone. W{\"a}hrend einer Entz{\"u}ndungsreaktion werden Entz{\"u}ndungsmediatoren wie Histamin, Bradykinin, Serotonin und Lysophosphatids{\"a}ure (LPA) ausgesch{\"u}ttet und k{\"o}nnen durch die Aktivierung ihrer G-Protein gekoppelten Rezeptoren (GPCR) oder direkte Interaktion mit Ionenkan{\"a}len die nozizeptive Erregung beeinflussen. Durch Anwendung von RT-PCR und eines neu entwickelten Antik{\"o}rpers wurde die Ko-Expression von TRESK-Kan{\"a}len zusammen mit Kan{\"a}len der Transient-Receptor-Potential-Kationenkanalfamilie (TRP) und LPA-Rezeptoren in DRG-Neuronen nachgewiesen. Durch rekombinante Ko-Expression von TRESK-Kan{\"a}len und LPA2-Rezeptoren in Xenopus Oozyten konnte durch Zugabe von LPA eine fast 10-fache Aktivierung des basalen K+-Stromes erzielt werden. Die Auswertung der Dosis-Wirkungskurve ergab einen EC50-Wert von 0,2 µM LPA. Die LPA-induzierte TRESK-Stromaktivierung konnte durch die Verwendung des mutierten Kanals TRESK[PQAVAD] oder durch die Zugabe des Phospholipase C (PLC) Inhibitors U73122 verhindert werden. Dies zeigt die Beteiligung des PLC-Signalwegs und die Bindung von Calcineurin an den TRESK-Kanal bei der Stromaktivierung. TRESK ist das einzige Mitglied der K2P-Familie, das eine LPA-induzierte Aktivierung des Stromes zeigt. TREK- und TASK-1-Str{\"o}me werden durch LPA inhibiert. In DRG-Neuronen mit kleinem Durchmesser wird Nozizeption durch die Aktivierung von TRPV1-Kan{\"a}len durch Hitze oder Capsaicin, dem Inhaltsstoff des Chilis, und zus{\"a}tzlich durch die Substanz LPA verursacht. Ein weiteres Mitglied der TRP-Familie, der TRPA1-Kanal, ist bei der verst{\"a}rkten Nozizeption w{\"a}hrend einer Entz{\"u}ndung involviert. Werden TRESK- und TRP-Kan{\"a}le in Xenopus Oozyten ko-exprimiert, verursacht LPA gleichzeitig einen Kationeneinw{\"a}rts- wie auch -ausw{\"a}rtsstrom. Unter diesen Bedingungen verschob sich das Umkehrpotenzial in einen Bereich zwischen den Umkehrpotenzialen von Oozyten, die nur den K+-Kanal exprimieren und von Oozyten, die nur den unspezifischen Kationenkanal exprimieren. Durch diese Experimente konnte gezeigt werden, dass die LPA-induzierte Ko-Aktivierung von TRP-Kan{\"a}len und TRESK zu einer Begrenzung des exzitatorischen Effekts f{\"u}hren kann. Die DRG-{\"a}hnlichen F11-Zellen exprimieren keine TRESK-Kan{\"a}le. Sie sind in der Lage durch Strompulse Aktionspotenziale zu generieren. Mit TRESK transfizierte F11-Zellen zeigten eine Verschiebung des Umkehrpotenzials in negative Richtung, einen gr{\"o}ßeren Ausw{\"a}rtsstrom und den Verlust von spannungsgesteuerten Natriumkan{\"a}len. Auch hohe Strompulse konnten keine Aktionspotenziale mehr ausl{\"o}sen. Bei Spannungs-Klemme-Messungen von prim{\"a}ren DRG-Neuronen von TRESK[wt]-M{\"a}usen erh{\"o}hte sich der IKSO nach Zugabe von LPA um {\"u}ber 20 \%. Im Gegensatz dazu zeigten DRG-Neurone von TRESK[ko]-M{\"a}usen unter diesen Bedingungen eine leichte Hemmung des IKSO von etwa 10 \%. In Neuronen, die TRPV1 exprimieren, f{\"u}hrte LPA nicht nur zum Anstieg des IKSO, sondern auch zur Aktivierung eines Einw{\"a}rtsstromes (TRPV1). Im Vergleich dazu wurde in TRESK[ko]-Neuronen durch LPA nur der Einw{\"a}rtsstrom aktiviert. In Strom-Klemme-Experimenten f{\"u}hrte LPA-Applikation zur Entstehung von Aktionspotenzialen mit h{\"o}herer Frequenz in Zellen von TRESK[ko]-M{\"a}usen im Vergleich zu Zellen von TRESK[wt]-M{\"a}usen. Zus{\"a}tzlich wurde die Erregung, die durch Strompulse von 100 pA ausgel{\"o}st wurde, in den beiden Genotypen durch LPA unterschiedlich moduliert. Die Aktionspotenzialfrequenz in TRESK[wt]-Neuronen wurde gesenkt, in TRESK[ko]-Neuronen wurde sie erh{\"o}ht. Die vorliegende Arbeit zeigt, dass die Erregung nozizeptiver Neurone durch LPA aufgrund der Ko-Aktivierung der TRESK-Kan{\"a}le abgeschw{\"a}cht werden kann. Die Erregbarkeit von sensorischen Neuronen wird strak durch die Aktivit{\"a}t und Expression der TRESK-Kan{\"a}le kontrolliert. Deswegen sind TRESK-Kan{\"a}le gute Kandidaten f{\"u}r die pharmakologische Behandlung von Schmerzkrankheiten.}, subject = {Kaliumkanal}, language = {de} } @phdthesis{Pachel2014, author = {Pachel, Christina Elisabeth}, title = {Entz{\"u}ndliche Faktoren und Blutpl{\"a}ttchen im experimentellen myokardialen isch{\"a}mischen Schaden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92565}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die erfolgreiche therapeutische Beeinflussung pathophysiologischer Prozesse im Herzen nach myokardialem Infarkt stellt nicht zuletzt durch die steigenden Fallzahlen in der westlichen Welt und die vergleichsweise hohe Mortalit{\"a}t eine Herausforderung an Forschung und Entwicklung dar. In der vorliegenden Arbeit werden verschiedene therapeutische Strategien in klinisch relevanten Mausmodellen des Myokardinfarkts und des Isch{\"a}mie-Reperfusions-Schadens getestet. Zun{\"a}chst wird untersucht, ob sich der Einsatz des NFκB-aktivierenden Zytokins TWEAK, welches weitreichende Funktionen in physiologischen Prozessen wie Wundheilung und Entz{\"u}ndung besitzt, als eine m{\"o}gliche Therapiestrategie eignet. Die Expression von TWEAK wird nach myokardialem Infarkt stark im Herzgewebe induziert. Das gleiche gilt f{\"u}r den Rezeptor von TWEAK, Fn14, der vor allem auf kardialen Fibroblasten exprimiert wird. Daher wird angenommen, dass das TWEAK-Fn14-System am kardialen Remodelling und der Wundheilung im infarzierten Herzen beteiligt sein kann. Eine rekombinante Variante von TWEAK - HSA-Flag-TWEAK - wird im Mausmodell des Myokardinfarkts getestet. {\"U}berraschenderweise zeigt sich hierbei, dass die therapeutische Behandlung von infarzierten Versuchstieren mit diesem Protein die Mortalit{\"a}t im Vergleich zu Placebo-behandelten M{\"a}usen signifikant erh{\"o}ht. Dies geht mit einem vermehrten Auftreten an linksventrikul{\"a}ren Rupturen einher, ohne dass Defekte im kardialen Remodelling oder eine erh{\"o}hte Apoptoserate im Herzen festgestellt werden k{\"o}nnen. HSA-Flag-TWEAK bewirkt eine Erh{\"o}hung der Gewebekonzentrationen an verschiedenen pro-inflammatorischen Zytokinen (IFN-γ, IL-5, IL-12, GITR, MCP-1/-5 und RANTES) und das vermehrte Einwandern von Immunzellen in das Myokard. Hierbei ist insbesondere die stark erh{\"o}hte Infiltration an neutrophilen Granulozyten auff{\"a}llig. Ein kausaler Zusammenhang zwischen diesen Immunzellen und den auftretenden kardialen Rupturen kann durch die Depletion der Neutrophilen gezeigt werden: Nach der systemischen Applikation eines Ly6G-depletierenden Antik{\"o}rpers ist das Auftreten von kardialen Rupturen nach TWEAK-Gabe vergleichbar mit der Placebo-behandelten Infarktgruppe. Die Tatsache, dass die Mortalit{\"a}t dennoch erh{\"o}ht ist, deutet auf weitere negative Effekte durch TWEAK hin. Diese Ergebnisse legen die Vermutung nahe, dass eine Hemmung der TWEAK-Fn14-Achse positive Effekte auf die Wundheilung nach Herzinfarkt bewirken k{\"o}nnte. Als zweite Therapiestrategie wird die pharmakologische Beeinflussung verschiedener Blutpl{\"a}ttchen-spezifischer Zielstrukturen untersucht, um das Auftreten von Mikrothromben nach Myokardinfarkt zu reduzieren. Eine Hemmung {\"u}ber das Blutpl{\"a}ttchen-Glykoprotein GPVI bewirkt in dem hier eingesetzten Mausmodell der kardialen Isch{\"a}mie-Reperfusion eine signifikant verbesserte Mikrozirkulation sowie verringerte Infarktgr{\"o}ßen. GPVI stellt somit ein vielversprechendes Ziel f{\"u}r eine blutpl{\"a}ttchenhemmende Therapie nach Myokardinfarkt dar. Zusammengefasst werden in der vorliegenden Arbeit verschiedene neuartige Therapieoptionen untersucht, die die Auswirkungen isch{\"a}mischer Erkrankungen des Herzens beeinflussen k{\"o}nnen. Die Ergebnisse besitzen daher das Potenzial, zur Entwicklung neuer Therapien nach Myokardinfarkt beizutragen.}, subject = {Herzinfarkt}, language = {de} } @phdthesis{Reeh2021, author = {Reeh, Laurens}, title = {Immunmodulatorische Effekte CD44-positiver Gef{\"a}ßwand-residenter Stamm- und Vorl{\"a}uferzellen im myokardialen Gewebe}, doi = {10.25972/OPUS-25102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251020}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die Identifizierung endogener Stammzellen mit kardiogenem Potenzial und die M{\"o}glichkeit, deren Differenzierung zu steuern, w{\"u}rde einen Meilenstein in der kardioregenerativen Therapie darstellen. Innerhalb der Gef{\"a}ßwand konnten unterschiedliche Stamm- und Vorl{\"a}uferzellen identifiziert werden, die sog. Gef{\"a}ßwand-residenten Stammzellen (VW-SCs). Zuletzt konnten aus CD34(+) VW-SCs, ohne genetische Manipulation, Kardiomyozyten generiert werden. Zus{\"a}tzlich fungiert die Gef{\"a}ßwand als Quelle inflammatorischer Zellen, die essenziell f{\"u}r die kardiogene Differenzierung der VW-SCs zu sein scheinen. Ziel dieser Arbeit war es, das Verhalten von CD44(+) VW-SCs zu untersuchen, um herauszufinden, inwieweit dieser Stammzelltyp eine endogene Generierung von Kardiomyozyten unterst{\"u}tzen k{\"o}nnte. Dabei wurde mit infarzierten M{\"a}useherzen, dem Aortenringassay (ARA) und dem kardialen Angiogeneseassay (CAA) gearbeitet. Sowohl in vivo in isch{\"a}mischen Arealen infarzierter M{\"a}useherzen als auch ex vivo im CAA kam es zu einem signifikanten Anstieg von CD44(+) Zellen. Mittels F{\"a}rbungen auf CD44 und Ki-67 konnte die Teilungsf{\"a}higkeit dieser Zellen demonstriert werden. Ex vivo ließen sich aus CD44(+) Zellen F4/80(+) Makrophagen generieren. Die CD44(+) VW-SCs k{\"o}nnen sich dabei sowohl zu pro-inflammatorischen iNOS(+) M1- als auch zu anti-inflammatorischen IL-10(+) M2-Makrophagen differenzieren. Eine Modulation der kardialen Inflammation k{\"o}nnte einen entscheidenden Einfluss auf die Kardiomyogenese haben. Unter VEGF-A kam es im CAA zu einer deutlichen Zunahme von CD44(+) Zellen. Unter Lenvatinib blieb das kardiale Sprouting g{\"a}nzlich aus, die Anzahl der CD44(+) Zellen stagnierte und die VW-SCs verblieben in ihren physiologischen Nischen innerhalb der Gef{\"a}ßwand. Warum es nach einem MI kaum zu einer funktionellen Herzmuskelregeneration kommt, ist weiterhin unklar. Die therapeutische Beeinflussung koronaradventitieller CD44(+) VW-SCs und inflammatorischer Prozesse k{\"o}nnte dabei zuk{\"u}nftig eine wichtige therapeutische Option darstellen.}, subject = {Antigen CD44}, language = {de} }