@phdthesis{Brendel2018, author = {Brendel, Harald}, title = {W{\"a}rmetransport in keramischen Faserisolationen bei hohen Temperaturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des W{\"a}rmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte f{\"u}r eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im \$\mu m\$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen \$50 \mathrm{kg/m^3}\$ und \$700 \mathrm{kg/m^3}\$ und k{\"o}nnen als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der D{\"a}mmwirkung gegen W{\"a}rmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuverm{\"o}gens im relevanten Wellenl{\"a}ngenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Ber{\"u}cksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungsw{\"a}rmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtw{\"a}rmeleitf{\"a}higkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streuk{\"o}rper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu k{\"o}nnen, wird eine N{\"a}herungsmethode f{\"u}r die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollst{\"a}ndigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell f{\"u}r kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur n{\"a}herungsweisen Berechnung der Streueffizienzen f{\"u}r r{\"a}umlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer W{\"a}rmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung k{\"o}nnen diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitf{\"a}higkeit bzw. die W{\"a}rmeleitf{\"a}higkeit auch bei hohen Temperaturen oberhalb von \$1000^\mathrm{o}\mathrm{C}\$ zuverl{\"a}ssig bestimmen zu k{\"o}nnen. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten W{\"a}rmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse f{\"u}r ber{\"u}hrungsfreie Hochtemperaturmessungen gezeigt.}, subject = {W{\"a}rme{\"u}bertragung}, language = {de} } @phdthesis{Weigold2015, author = {Weigold, Lena}, title = {Ermittlung des Zusammenhangs zwischen mechanischer Steifigkeit und W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei hochpor{\"o}sen Materialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ziel dieser Arbeit ist es, ein verbessertes Verst{\"a}ndnis f{\"u}r den Zusammenhang zwischen mechanischer Steifigkeit und W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei hochpor{\"o}sen Materialien zu erlangen. Im Fokus dieser Arbeit steht die Fragestellung, wie mechanische Steifigkeit und W{\"a}rmeleitf{\"a}higkeit bei hochpor{\"o}sen Materialien miteinander zusammenh{\"a}ngen und ob es m{\"o}glich ist, diese beiden Eigenschaften durch geometrische Modifikationen der Mikrostruktur unabh{\"a}ngig voneinander zu ver{\"a}ndern. Die durchgef{\"u}hrten Untersuchungen haben gezeigt, dass ein Großteil der mikrostrukturellen Modifikationen beide Materialeigenschaften beeinflussen und die mechanische Steifigkeit in der Regel eng mit dem W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st verkn{\"u}pft ist. Es konnte jedoch auch nachgewiesen werden, dass die mechanische Steifigkeit bei hochpor{\"o}sen Materialien nicht eindeutig mit dem W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st zusammenh{\"a}ngt und spezifische mikrostrukturelle Modifikationen einen st{\"a}rkeren Einfluss auf die mechanische Steifigkeit besitzen, als auf den W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st. Umgekehrt ist diese Aussage nicht ganz so eindeutig. Die theoretische Betrachtung des Zusammenhangs zeigt, dass in die Berechnung der mechanischen Steifigkeit teils andere geometrische Strukturgr{\"o}ßen einfließen, als in die Berechnung des W{\"a}rmetransports {\"u}ber das Festk{\"o}rperger{\"u}st, so dass die mechanische Steifigkeit unabh{\"a}ngig von der W{\"a}rmeleitf{\"a}higkeit ver{\"a}ndert werden kann. Es zeigt sich jedoch auch, dass die meisten strukturellen Ver{\"a}nderungen beide Eigenschaften beeinflussen und die mechanische Steifigkeit aufgrund der Biegedeformation der Netzwerkelemente systematisch st{\"a}rker auf strukturelle Ver{\"a}nderungen reagiert als die W{\"a}rmeleitf{\"a}higkeit der Struktur, so dass die mechanische Steifigkeit in der Regel quadratisch mit der W{\"a}rmeleitf{\"a}higkeit des Festk{\"o}rperger{\"u}stes skaliert. Mit den Methoden der effective-media-theory lassen sich Grenzen ermitteln, innerhalb derer sich mechanische Steifigkeit und W{\"a}rmeleitf{\"a}higkeit unabh{\"a}ngig voneinander variieren lassen. Im experimentellen Teil der Arbeit wurden Probenserien von Polyurethan-Sch{\"a}umen, Polyurea Aerogelen und organisch / anorganischen Hybrid Aerogelen herangezogen, so dass por{\"o}se Materialien mit geordneten, voll vernetzten Mikrostrukturen, mit statistisch isotropen, teilvernetzen Mikrostrukturen, sowie Mikrostrukturen mit anisotropen Charakter in die Untersuchung einbezogen werden konnten. Als Struktureigenschaften, die die mechanische Steifigkeit ungew{\"o}hnlich stark beeinflussen, konnten die Regelm{\"a}ßigkeit der Struktur und der Kr{\"u}mmungsradius der Netzwerkelemente sicher identifiziert werden. Alle weiteren strukturellen Ver{\"a}nderungen f{\"u}hren zu dem ann{\"a}hernd quadratischen Zusammenhang. In einem dritten Abschnitt dieser Arbeit wird das vereinfachte Phononendiffusionsmodell herangezogen, um den Zusammenhang zwischen mechanischer Steifigkeit und W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei Aerogelen grundlagenphysikalisch zu modellieren. Zur Diskussion werden die experimentell ermittelten Eigenschaften der isotropen Polyurea Aerogele herangezogen und eine qualitative Modellierung ihrer Schwingungszustandsdichten durchgef{\"u}hrt. Es konnte gezeigt werden, dass die Kombination aus Probendichte und Schallgeschwindigkeit, mit der sich die mechanische Steifigkeit berechnen l{\"a}sst, unter bestimmten Randbedingungen auch die Energie und Transporteigenschaften der Phononen beschreibt, die den W{\"a}rmetransport {\"u}ber das Festk{\"o}rperger{\"u}st bei Aerogelen bestimmen. Die Ergebnisse dieser Arbeit lassen sich zum Beispiel heranziehen, um die Eigenschaften hochpor{\"o}ser Materialien f{\"u}r eine gegebene Anwendung durch mikrostrukturelle Modifikationen optimal zu gestalten.}, subject = {Por{\"o}ser Stoff}, language = {de} }