@article{LorenzRosner2022, author = {Lorenz, Kristina and Rosner, Marsha Rich}, title = {Harnessing RKIP to combat heart disease and cancer}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers14040867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262185}, year = {2022}, abstract = {Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{JochmannElkenaniMohamedetal.2019, author = {Jochmann, Svenja and Elkenani, Manar and Mohamed, Belal A. and Buchholz, Eric and Lbik, Dawid and Binder, Lutz and Lorenz, Kristina and Shah, Ajay M. and Hasenfuß, Gerd and Toischer, Karl and Schnelle, Moritz}, title = {Assessing the role of extracellular signal-regulated kinases 1 and 2 in volume overload-induced cardiac remodelling}, series = {ESC Heart Failure}, volume = {6}, journal = {ESC Heart Failure}, number = {5}, doi = {10.1002/ehf2.12497}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212735}, pages = {1015 -- 1026}, year = {2019}, abstract = {Aims Volume overload (VO) and pressure overload (PO) induce differential cardiac remodelling responses including distinct signalling pathways. Extracellular signal-regulated kinases 1 and 2 (ERK1/2), key signalling components in the mitogen-activated protein kinase (MAPK) pathways, modulate cardiac remodelling during pressure overload (PO). This study aimed to assess their role in VO-induced cardiac remodelling as this was unknown. Methods and results Aortocaval fistula (Shunt) surgery was performed in mice to induce cardiac VO. Two weeks of Shunt caused a significant reduction of cardiac ERK1/2 activation in wild type (WT) mice as indicated by decreased phosphorylation of the TEY (Thr-Glu-Tyr) motif (-28\% as compared with Sham controls, P < 0.05). Phosphorylation of other MAPKs was unaffected. For further assessment, transgenic mice with cardiomyocyte-specific ERK2 overexpression (ERK2tg) were studied. At baseline, cardiac ERK1/2 phosphorylation in ERK2tg mice remained unchanged compared with WT littermates, and no overt cardiac phenotype was observed; however, cardiac expression of the atrial natriuretic peptide was increased on messenger RNA (3.6-fold, P < 0.05) and protein level (3.1-fold, P < 0.05). Following Shunt, left ventricular dilation and hypertrophy were similar in ERK2tg mice and WT littermates. Left ventricular function was maintained, and changes in gene expression indicated reactivation of the foetal gene program in both genotypes. No differences in cardiac fibrosis and kinase activation was found amongst all experimental groups, whereas apoptosis was similarly increased through Shunt in ERK2tg and WT mice. Conclusions VO-induced eccentric hypertrophy is associated with reduced cardiac ERK1/2 activation in vivo. Cardiomyocyte-specific overexpression of ERK2, however, does not alter cardiac remodelling during VO. Future studies need to define the pathophysiological relevance of decreased ERK1/2 signalling during VO.}, language = {en} } @phdthesis{Niederlechner2013, author = {Niederlechner, Stefanie}, title = {Assessment of the basic molecular mechanisms underlying L-glutamine's cytoprotective effects after intestinal injury}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77399}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Critical illness like sepsis, shock, and intestinal bowel disease are one of the leading causes of morbidity and mortality in the US and around the world. At present, studies to define new therapeutic interventions that can protect tissues and cells against injury and attenuate inflammation are fields of intense investigation. While research over the past decade has clearly identified GLN as a vital stress substrate facilitating cellular survival following injury, the initiation steps in GLN's cytoprotective molecular mechanism still remain elusive. Previously published work suggested that stabilization of ECM proteins and activation of ECM receptor osmosignaling may play a central role in the orchestration of many cellular pathways following stress. Thus, I hypothesized that preservation of ECM protein and EGFR levels as well as ECM receptor signaling play key roles in the molecular mechanisms underlying GLN's protection against thermal injury in the intestine. I was able to confirm via Western blotting and by using silencing RNA against FN, Ntn-1, EGFR, and their negative controls, that GLN-mediated preservation of FN, Ntn-1, and EGFR levels is critical in GLN's protection against hyperthermia in IEC-6 cells. By using a selective FN-Integrin interaction inhibitor GRGDSP, its negative control peptide GRGESP, and Src-kinase inhibitor PP2, I showed that FN-Integrin signaling and Src-kinase activation are essential in GLN-mediated protection in the intestine. This applied to EGFR signaling as demonstrated using the EGFR tyrosine kinase inhibitor AG1478. In addition to GRGDSP and AG1478, ERK1/2 inhibitors PD98059 and UO126 as well as the p38MAPK inhibitor SB203580 revealed that GLN is protective by activating ERK1/2 and dephosphorylating p38MAPK via FN-Integrin and EGFR signaling. However, GLN-mediated PI3-K/Akt/Hsp70 activation seems to occur independently of FN-Integrin and EGFR signaling as indicated by Western blots as well as experiments using the PI3-K inhibitor LY294002, GRGDSP, and AG1478. The results showed that GLN activates cell survival signaling pathways via integrins as well as EGFRs after hyperthermia. Moreover, I found that GLN-mediated preservation of FN expression after HS is regulated via PI3-K signaling. Whether GLN-mediated PI3-K signaling happens simultaneously to FN-Integrin and EGFR signaling or whether PI3-K signaling coordinates FN-Integrin and EGFR signaling needs to be investigated in future studies. Further, experiments with PD98059 and GRGDSP revealed that ERK1/2 assists in mediating transactivation of HSF-1 following HS. This leads to increases in Hsp70 expression via FN-Integrin signaling, which is known to attenuate apoptosis after thermal injury. Fluorescence microscopy results indicated that HS and GLN regulate cell are size changes and the morphology of F-actin via FN-Integrin signaling. Experiments using GRGDSP and GRGESP showed that GLN enhances cellular survival via FN-Integrin signaling in a manner that does not require increased intracellular GLN concentrations (as quantified using LC-MS/MS). In summary, my thesis work gives new and potentially clinically relevant mechanistic insights into GLN-mediated molecular cell survival pathways. These results warrant clinical translation to assess if clinical outcome of critically ill patients suffering from gastrointestinal diseases can be improved by GLN treatment and/or by targeting the molecular pathways found in my studies.}, subject = {Glutamin}, language = {en} }