@phdthesis{Berberich2024, author = {Berberich, Oliver}, title = {Lateral Cartilage Tissue Integration - Evaluation of Bonding Strength and Tissue Integration \(in\) \(vitro\) Utilizing Biomaterials and Adhesives}, doi = {10.25972/OPUS-34602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Articular cartilage defects represent one of the most challenging clinical problem for orthopedic surgeons and cartilage damage after trauma can result in debilitating joint pain, functional impairment and in the long-term development of osteoarthritis. The lateral cartilage-cartilage integration is crucial for the long-term success and to prevent further tissue degeneration. Tissue adhesives and sealants are becoming increasingly more popular and can be a beneficial approach in fostering tissue integration, particularly in tissues like cartilage where alternative techniques, such as suturing, would instead introduce further damage. However, adhesive materials still require optimization regarding the maximization of adhesion strength on the one hand and long-term tissue integration on the other hand. In vitro models can be a valuable support in the investigation of potential candidates and their functional mechanisms. For the conducted experiments within this work, an in vitro disc/ring model obtained from porcine articular cartilage tissue was established. In addition to qualitative evaluation of regeneration, this model facilitates the implementation of biomechanical tests to quantify cartilage integration strength. Construct harvesting for histology and other evaluation methods could be standardized and is ethically less questionable compared to in vivo testing. The opportunity of cell culture technique application for the in vitro model allowed a better understanding of cartilage integration processes. Tissue bonding requires chemical or physical interaction of the adhesive material and the substrate. Adhesive hydrogels can bind to the defect interface and simultaneously fill the gap of irregularly shaped defect voids. Fibrin gels are derived from the physiological blood-clot formation and are clinically applied for wound closure. Within this work, comparisons of different fibrin glue formulations with the commercial BioGlue® were assessed, which highlighted the need for good biocompatibility when applied on cartilage tissue in order to achieve satisfying long-term integration. Fibrin gel formulations can be adapted with regard to their long-term stability and when applied on cartilage disc/ring constructs improved integrative repair is observable. The kinetic of repairing processes was investigated in fibrin-treated cartilage composites as part of this work. After three days in vitro cultivation, deposited extracellular matrix (ECM) was obvious at the glued interface that increased further over time. Interfacial cell invasion from the surrounding native cartilage was detected from day ten of tissue culture. The ECM formation relies on molecular factors, e.g., as was shown representatively for ascorbic acid, and contributes to increasing integration strengths over time. The experiments performed with fibrin revealed that the treatment with a biocompatible adhesive that allows cartilage neosynthesis favors lateral cartilage integration in the long term. However, fibrin has limited immediate bonding strength, which is disadvantageous for use on articular cartilage that is subject to high mechanical stress. The continuing aim of this thesis was to further develop adhesive mechanisms and new adhesive hydrogels that retain the positive properties of fibrin but have an increased immediate bonding strength. Two different photochemical approaches with the advantage of on-demand bonding were tested. Such treatment potentially eases the application for the professional user. First, an UV light induced crosslinking mechanism was transferred to fibrin glue to provide additional bonding strength. For this, the cartilage surface was functionalized with highly reactive light-sensitive diazirine groups, which allowed additional covalent bonds to the fibrin matrix and thus increased the adhesive strength. However, the disadvantages of this approach were the multi-step bonding reactions, the need for enzymatic pretreatment of the cartilage, expensive reagents, potential UV-light damage, and potential toxicity hazards. Due to the mentioned disadvantages, no further experiments, including long-term culture, were carried out. A second photosensitive approach focused on blue light induced crosslinking of fibrinogen (RuFib) via a photoinitiator molecule instead of using thrombin as a crosslinking mediator like in normal fibrin glue. The used ruthenium complex allowed inter- and intramolecular dityrosine binding of fibrinogen molecules. The advantage of this method is a one-step curing of fibrinogen via visible light that further achieved higher adhesive strengths than fibrin. In contrast to diazirine functionalization of cartilage, the ruthenium complex is of less toxicological concern. However, after in vitro cultivation of the disc/ring constructs, there was a decrease in integration strength. Compared to fibrin, a reduced cartilage synthesis was observed at the defect. It is also disadvantageous that a direct adjustment of the adhesive can only be made via protein concentration, since fibrinogen is a natural protein that has a fixed number of tyrosine binding sites without chemical modification. An additional cartilage adhesive was developed that is based on a mussel-inspired adhesive mechanism in which reactivity to a variety of substrates is enabled via free DOPA amino acids. DOPA-based adhesion is known to function in moist environments, a major advantage for application on water-rich cartilage tissue surrounded by synovial liquid. Reactive DOPA groups were synthetically attached to a polymer, here POx, to allow easy chemical modifiability, e.g. insertion of hydrolyzable ester motifs for tunable degradation. The possibility of preparing an adhesive hybrid hydrogel of POx in combination with fibrinogen led to good cell compatibility as was similarly observed with fibrin, but with increased immediate adhesive strength. Degradation could be adjusted by the amount of ester linkages on the POx and a direct influence of degradation rates on the development of integration in the in vitro model could be shown. Hydrogels are well suited to fill defect gaps and immediate integration can be achieved via adhesive properties. The results obtained show that for the success of long-term integration, a good ability of the adhesive to take up synthesized ECM components and cells to enable regeneration is required. The degradation kinetics of the adhesive must match the remodeling process to avoid intermediate loss of integration power and to allow long-term firm adhesion to the native tissue. Hydrogels are not only important as adhesives for smaller lesions, but also for filling large defect volumes and populating them with cells to produce tissue engineered cartilage. Many different hydrogel types suitable for cartilage synthesis are reported in the literature. A long-term stable fibrin formulation was tested in this work not only as an adhesive but also as a bulk hydrogel construct. Agarose is also a material widely used in cartilage tissue engineering that has shown good cartilage neosynthesis and was included in integration assessment. In addition, a synthetic hyaluronic acid-based hydrogel (HA SH/P(AGE/G)) was used. The disc/ring construct was adapted for such experiments and the inner lumen of the cartilage ring was filled with the respective hydrogel. In contrast to agarose, fibrin and HA-SH/P(AGE/G) gels have a crosslink mechanism that led to immediate bonding upon contact with cartilage during curing. The enhanced cartilage neosynthesis in agarose compared to the other hydrogel types resulted in improved integration during in vitro culture. This shows that for the long-term success of a treatment, remodeling of the hydrogel into functional cartilage tissue is a very high priority. In order to successfully treat larger cartilage defects with hydrogels, new materials with these properties in combination with chemical modifiability and a direct adhesion mechanism are one of the most promising approaches.}, subject = {Knorpel}, language = {en} } @phdthesis{Massih2024, author = {Massih, Bita}, title = {Human stem cell-based models to analyze the pathophysiology of motor neuron diseases}, publisher = {Frontiers in Cell and Developmental Biology}, doi = {10.25972/OPUS-34637}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Daeullary2024, author = {D{\"a}ullary, Thomas}, title = {Establishment of an infection model of the human intestinal epithelium to study host and pathogen determinants during the \(Salmonella\) Typhimurium infection process}, doi = {10.25972/OPUS-31154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {According to the WHO, foodborne derived enteric infections are a global disease burden and often manifest in diseases that can potentially reach life threatening levels, especially in developing countries. These diseases are caused by a variety of enteric pathogens and affect the gastrointestinal tract, from the gastric to the intestinal to the rectal tissue. Although the complex mucosal structure of these organs is usually well prepared to defend the body against harmful agents, specialised pathogens such as Salmonella enterica can overcome the intestinal defence mechanism. After ingestion, Salmonella are capable of colonising the gut and establishing their proliferative niche, thereby leading to inflammatory processes and tissue damage of the host epithelium. In order to understand these processes, the scientific community in the last decades mostly used cell line based in vitro approaches or in vivo animal studies. Although these approaches provide fundamental insights into the interactions between bacteria and host cells, they have limited applicability to human pathology. Therefore, tissue engineered primary based approaches are important for modern infection research. They exhibit the human complexity better than traditional cell lines and can mimic human-obligate processes in contrast to animal studies. Therefore, in this study a tissue engineered human primary model of the small intestinal epithelium was established for the application of enteric infection research with the exemplary pathogen Salmonella Typhimurium. To this purpose, adult stem cell derived intestinal organoids were used as a primary human cell source to generate monolayers on biological or synthetic scaffolds in a Transwell®-like setting. These tissue models of the intestinal epithelium were examined for their comparability to the native tissue in terms of morphology, morphometry and barrier function. Further, the gene expression profiles of organotypical mucins, tight junction-associated proteins and claudins were investigated. Overall, the biological scaffold-based tissue models showed higher similarity to the native tissue - among others in morphometry and polarisation. Therefore, these models were further characterised on cellular and structural level. Ultrastructural analysis demonstrated the establishment of characteristic microvilli and tight-junction connections between individual epithelial cells. Furthermore, the expression pattern of typical intestinal epithelial protein was addressed and showed in vivo-like localisation. Interested in the cell type composition, single cell transcriptomic profiling revealed distinct cell types including proliferative cells and stem cells, progenitors, cellular entities of the absorptive lineage, Enterocytes and Microfold-like cells. Cells of the secretory lineage were also annotated, but without distinct canonical gene expression patterns. With the organotypical polarisation, protein expression, structural features and the heterogeneous cell composition including the rare Microfold-like cells, the biological scaffold-based tissue model of the intestinal epithelium demonstrates key requisites needed for infection studies with Salmonella. In a second part of this study, a suitable infection protocol of the epithelial tissue model with Salmonella Typhimurium was established, followed by the examination of key features of the infection process. Salmonella adhered to the epithelial microvilli and induced typical membrane ruffling during invasion; interestingly the individual steps of invasion could be observed. After invasion, time course analysis showed that Salmonella resided and proliferated intracellularly, while simultaneously migrating from the apical to the basolateral side of the infected cell. Furthermore, the bacterial morphology changed to a filamentous phenotype; especially when the models have been analysed at late time points after infection. The epithelial cells on the other side released the cytokines Interleukin 8 and Tumour Necrosis Factor α upon bacterial infection in a time-dependent manner. Taken together, Salmonella infection of the intestinal epithelial tissue model recapitulates important steps of the infection process as described in the literature, and hence demonstrates a valid in vitro platform for the investigation of the Salmonella infection process in the human context. During the infection process, intracellular Salmonella populations varied in their bacterial number, which could be attributed to increased intracellular proliferation and demonstrated thereby a heterogeneous behaviour of Salmonella in individual cells. Furthermore, by the application of single cell transcriptomic profiling, the upregulation of Olfactomedin-4 (OLFM4) gene expression was detected; OLFM4 is a protein involved in various functions including cell immunity as well as proliferating signalling pathways and is often used as intestinal stem cell marker. This OLFM4 upregulation was time-dependent, restricted to Salmonella infected cells and seemed to increase with bacterial mass. Investigating the OLFM4 regulatory mechanism, nuclear factor κB induced upregulation could be excluded, whereas inhibition of the Notch signalling led to a decrease of OLFM4 gene and protein expression. Furthermore, Notch inhibition resulted in decreased filamentous Salmonella formation. Taken together, by the use of the introduced primary epithelial tissue model, a heterogeneous intracellular bacterial behaviour was observed and a so far overlooked host cell response - the expression of OLFM4 by individual infected cells - could be identified; although Salmonella Typhimurium is one of the best-studied enteric pathogenic bacteria. This proves the applicability of the introduced tissue model in enteric infection research as well as the importance of new approaches in order to decipher host-pathogen interactions with higher relevance to the host.}, subject = {Salmonella typhimurium}, language = {en} } @phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @phdthesis{Peindl2024, author = {Peindl, Matthias}, title = {Refinement of 3D lung cancer models for automation and patient stratification with mode-of-action studies}, doi = {10.25972/OPUS-31069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Lung cancer is the main cause of cancer-related deaths worldwide. Despite the availability of several targeted therapies and immunotherapies in the clinics, the prognosis for lung cancer remains poor. A major problem for the low benefit of these therapies is intrinsic and acquired resistance, asking for pre-clinical models for closer investigation of predictive biomarkers for refined personalized medicine and testing of possible combination therapies as well as novel therapeutic approaches to break resistances. One third of all lung adenocarcinoma harbor mutations in the KRAS gene, of which 39 \% are transitions from glycine to cysteine in codon 12 (KRASG12C). Being considered "undruggable" in previous decades, KRASG12C-inhibitors now paved the way into the standard-of-care for lung adenocarcinoma treatment in the clinics. Still, the overall response rates as well as overall survival of patients treated with KRASG12C-inhibitors are sobering. Therefore, 3D KRASG12C-biomarker in vitro models were developed based on a decellularized porcine jejunum (SISmuc) using commercial and PDX-derived cell lines and characterized in regards of epithelial-mesenchymal-transition (EMT), stemness, proliferation, invasion and c-MYC expression as well as the sensitivity towards KRASG12C-inhibiton. The phenotype of lung tumors harboring KRAS mutations together with a c-MYC overexpression described in the literature regarding invasion and proliferation for in vivo models was well represented in the SISmuc models. A higher resistance towards targeted therapies was validated in the 3D models compared to 2D cultures, while reduced viability after treatment with combination therapies were exclusively observed in the 3D models. In the test system neither EMT, stemness nor the c-MYC expression were directly predictive for drug sensitivity. Testing of a panel of combination therapies, a sensitizing effect of the aurora kinase A (AURKA) inhibitor alisertib for the KRASG12C-inhibitor ARS-1620 directly correlating with the level of c-MYC expression in the corresponding 3D models was observed. Thereby, the capability of SISmuc tumor models as an in vitro test system for patient stratification was demonstrated, holding the possibility to reduce animal experiments. Besides targeted therapies the treatment of NSCLC with oncolytic viruses (OVs) is a promising approach. However, a lack of in vitro models to test novel OVs limits the transfer from bench to bedside. In this study, 3D NSCLC models based on the SISmuc were evaluated for their capability to perform efficacy and risk assessment of oncolytic viruses (OVs) in a pre-clinical setting. Hereby, the infection of cocultures of tumor cells and fibroblasts on the SISmuc with provided viruses demonstrated that in contrast to a wildtype herpes simplex virus 1 (HSV-1) based OV, the attenuated version of the OV exhibited specificity for NSCLC cells with a more advanced and highly proliferative phenotype, while fibroblasts were no longer permissive for infection. This approach introduced SISmuc tumor models as novel test system for in vitro validation of OVs. Finally, a workflow for validating the efficacy of anti-cancer therapies in 3D tumor spheroids was established for the transfer to an automated platform based on a two-arm-robot system. In a proof-of-concept process, H358 spheroids were characterized and treated with the KRASG12C-inhibitor ARS-1620. A time- and dose-dependent reduction of the spheroid area after treatment was defined together with a live/dead-staining as easy-to-perform and cost-effective assays for automated drug testing that can be readily performed in situ in an automated system.}, subject = {Krebs }, language = {en} } @phdthesis{Jihyoung2024, author = {Jihyoung, Choi}, title = {Development of an Add-On Electrode for Non-Invasive Monitoring in Bioreactor Cultures and Medical Devices}, doi = {10.25972/OPUS-35823}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358232}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Electrochemical impedance spectroscopy (EIS) is a valuable technique analyzing electrochemical behavior of biological systems such as electrical characterization of cells and biomolecules, drug screening, and biomaterials in biomedical field. In EIS, an alternating current (AC) power signal is applied to the biological system, and the impedance of the system is measured over a range of frequencies. In vitro culture models of endothelial or epithelial barrier tissue can be achieved by culturing barrier tissue on scaffolds made with synthetic or biological materials that provide separate compartments (apical and basal sides), allowing for further studies on drug transport. EIS is a great candidate for non-invasive and real-time monitoring of the electrical properties that correlate with barrier integrity during the tissue modeling. Although commercially available transendothelial/transepithelial electrical resistance (TEER) measurement devices are widely used, their use is particularly common in static transwell culture. EIS is considered more suitable than TEER measurement devices in bioreactor cultures that involve dynamic fluid flow to obtain accurate and reliable measurements. Furthermore, while TEER measurement devices can only assess resistance at a single frequency, EIS measurements can capture both resistance and capacitance properties of cells, providing additional information about the cellular barrier's characteristics across various frequencies. Incorporating EIS into a bioreactor system requires the careful optimization of electrode integration within the bioreactor setup and measurement parameters to ensure accurate EIS measurements. Since bioreactors vary in size and design depending on the purpose of the study, most studies have reported using an electrode system specifically designed for a particular bioreactor. The aim of this work was to produce multi-applicable electrodes and established methods for automated non-invasive and real-time monitoring using the EIS technique in bioreactor cultures. Key to the electrode material, titanium nitride (TiN) coating was fabricated on different substrates (materials and shape) using physical vapor deposition (PVD) and housed in a polydimethylsiloxane (PDMS) structure to allow the electrodes to function as independent units. Various electrode designs were evaluated for double-layer capacitance and morphology using EIS and scanning electron microscopy (SEM), respectively. The TiN-coated tube electrode was identified as the optimal choice. Furthermore, EIS measurements were performed to examine the impact of influential parameters related to culture conditions on the TiN-coated electrode system. In order to demonstrate the versatility of the electrodes, these electrodes were then integrated into in different types of perfusion bioreactors for monitoring barrier cells. Blood-brain barrier (BBB) cells were cultured in the newly developed dynamic flow bioreactor, while human umblical vascular endothelial cells (HUVECs) and Caco-2 cells were cultured in the miniature hollow fiber bioreactor (HFBR). As a result, the TiN-coated tube electrode system enabled investigation of BBB barrier integrity in long-term bioreactor culture. While EIS measurement could not detect HUVECs electrical properties in miniature HFBR culture, there was the possibility of measuring the barrier integrity of Caco-2 cells, indicating potential usefulness for evaluating their barrier function. Following the bioreactor cultures, the application of the TiN-coated tube electrode was expanded to hemofiltration, based on the hypothesis that the EIS system may be used to monitor clotting or clogging phenomena in hemofiltration. The findings suggest that the EIS monitoring system can track changes in ion concentration of blood before and after hemofiltration in real-time, which may serve as an indicator of clogging of filter membranes. Overall, our research demonstrates the potential of TiN-coated tube electrodes for sensitive and versatile non-invasive monitoring in bioreactor cultures and medical devices.}, subject = {Monitoring}, language = {en} } @phdthesis{Gensler2023, author = {Gensler, Marius E.}, title = {Simultaneous printing of tissue and customized bioreactor}, doi = {10.25972/OPUS-28019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Additive manufacturing processes such as 3D printing are booming in the industry due to their high degree of freedom in terms of geometric shapes and available materials. Focusing on patient-specific medicine, 3D printing has also proven useful in the Life Sciences, where it exploits the shape fidelity for individualized tissues in the field of bioprinting. In parallel, the current systems of bioreactor technology have adapted to the new manufacturing technology as well and 3D-printed bioreactors are increasingly being developed. For the first time, this work combines the manufacturing of the tissue and a tailored bioreactor, significantly streamlining the overall process and optimally merging the two processes. This way the production of the tissues can be individualized by customizing the reactor to the tissue and the patient-specific wound geometry. For this reason, a common basis and guideline for the cross-device and cross-material use of 3D printers was created initially. Their applicability was demonstrated by the iterative development of a perfusable bioreactor system, made from polydimethylsiloxane (PDMS) and a lignin-based filament, into which a biological tissue of flexible shape can be bioprinted. Cost-effective bioink-replacements and in silico computational fluid dynamics simulations were used for material sustainability and shape development. Also, nutrient distribution and shear stress could be predicted in this way pre-experimentally. As a proof of functionality and adaptability of the reactor, tissues made from a nanocellulose-based Cellink® Bioink, as well as an alginate-based ink mixed with Me-PMeOx100-b-PnPrOzi100-EIP (POx) (Alginate-POx bioink) were successfully cultured dynamically in the bioreactor together with C2C12 cell line. Tissue maturation was further demonstrated using hMSC which were successfully induced to adipocyte differentiation. For further standardization, a mobile electrical device for automated media exchange was developed, improving handling in the laboratory and thus reduces the probability of contamination.}, subject = {3 D bioprinting}, language = {en} } @phdthesis{Altmann2023, author = {Altmann, Stephan}, title = {Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks}, doi = {10.25972/OPUS-29100}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 'From the Fundamentals of Biofabrication toward functional Tissue Models' and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. J{\"u}rgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. J{\"u}rgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed.}, subject = {Glykobiologie}, language = {en} } @phdthesis{Malkmus2023, author = {Malkmus, Christoph}, title = {Establishment of a 3D \(in\) \(vitro\) skin culture system for the obligatory human parasite \(Onchocerca\) \(volvulus\)}, doi = {10.25972/OPUS-31717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Onchocerciasis, the world's second-leading infectious cause of blindness in humans -prevalent in Sub-Saharan Africa - is caused by Onchocerca volvulus (O. volvulus), an obligatory human parasitic filarial worm. Commonly known as river blindness, onchocerciasis is being targeted for elimination through ivermectin-based mass drug administration programs. However, ivermectin does not kill adult parasites, which can live and reproduce for more than 15 years within the human host. These impediments heighten the need for a deeper understanding of parasite biology and parasite-human host interactions, coupled with research into the development of new tools - macrofilaricidal drugs, diagnostics, and vaccines. Humans are the only definitive host for O. volvulus. Hence, no small-animal models exist for propagating the full life cycle of O. volvulus, so the adult parasites must be obtained surgically from subcutaneous nodules. A two-dimensional (2D) culture system allows that O. volvulus larvae develop from the vector-derived infective stage larvae (L3) in vitro to the early pre-adult L5 stages. As problematic, the in vitro development of O. volvulus to adult worms has so far proved infeasible. We hypothesized that an increased biological complexity of a three-dimensional (3D) culture system will support the development of O. volvulus larvae in vitro. Thus, we aimed to translate crucial factors of the in vivo environment of the developing worms into a culture system based on human skin. The proposed tissue model should contain 1. skinspecific extracellular matrix, 2. skin-specific cells, and 3. enable a direct contact of larvae and tissue components. For the achievement, a novel adipose tissue model was developed and integrated to a multilayered skin tissue comprised of epidermis, dermis and subcutis. Challenges of the direct culture within a 3D tissue model hindered the application of the three-layered skin tissue. However, the indirect coculture of larvae and skin models supported the growth of fourth stage (L4) larvae in vitro. The direct culture of L4 and adipose tissue strongly improved the larvae survival. Furthermore, the results revealed important cues that might represent the initial encapsulation of the developing worm within nodular tissue. These results demonstrate that tissue engineered 3D tissues represent an appropriate in vitro environment for the maintenance and examination of O. volvulus larvae.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Alzheimer2023, author = {Alzheimer, Mona}, title = {Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\)}, doi = {10.25972/OPUS-19344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases.}, subject = {Campylobacter jejuni}, language = {en} } @phdthesis{Reuter2023, author = {Reuter, Christian Steffen}, title = {Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin}, doi = {10.25972/OPUS-25114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251147}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{Fey2022, author = {Fey, Christina}, title = {Establishment of an intestinal tissue model for pre-clinical screenings}, doi = {10.25972/OPUS-24410}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the "gold standard" in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D Matrigel® based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as Transwell®-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10\% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or Transwell®-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The Transwell®-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies.}, subject = {D{\"u}nndarm}, language = {en} } @phdthesis{Leikeim2022, author = {Leikeim, Anna}, title = {Vascularization Strategies for Full-Thickness Skin Equivalents to Model Melanoma Progression}, doi = {10.25972/OPUS-27295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-272956}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation. In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM. Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused. Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31. For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis. Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Schmidt2021, author = {Schmidt, Stefanie}, title = {Cartilage Tissue Engineering - Comparison of Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells in Agarose and Hyaluronic Acid-Based Hydrogels}, doi = {10.25972/OPUS-25171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Articular cartilage damage caused by sports accidents, trauma or gradual wear and tear can lead to degeneration and the development of osteoarthritis because cartilage tissue has only limited capacity for intrinsic healing. Osteoarthritis causes reduction of mobility and chronic pain and is one of the leading causes of disability in the elderly population. Current clinical treatment options can reduce pain and restore mobility for some time, but the formed repair tissue has mostly inferior functionality compared to healthy articular cartilage and does not last long-term. Articular cartilage tissue engineering is a promising approach for the improvement of the quality of cartilage repair tissue and regeneration. In this thesis, a promising new cell type for articular cartilage tissue engineering, the so-called articular cartilage progenitor cell (ACPC), was investigated for the first time in the two different hydrogels agarose and HA-SH/P(AGE-co-G) in comparison to mesenchymal stromal cells (MSCs). In agarose, ACPCs´ and MSCs´ chondrogenic capacity was investigated under normoxic (21 \% oxygen) and hypoxic (2 \% oxygen) conditions in monoculture constructs and in zonally layered co-culture constructs with ACPCs in the upper layer and MSCs in the lower layer. In the newly developed hyaluronic acid (HA)-based hydrogel HA-SH/P(AGE-co-G), chondrogenesis of ACPCs and MSCs was also evaluated in monoculture constructs and in zonally layered co-culture constructs like in agarose hydrogel. Additionally, the contribution of the bioactive molecule hyaluronic acid to chondrogenic gene expression of MSCs was investigated in 2D monolayer, 3D pellet and HA-SH hydrogel culture. It was shown that both ACPCs and MSCs could chondrogenically differentiate in agarose and HA-SH/P(AGE-co-G) hydrogels. In agarose hydrogel, ACPCs produced a more articular cartilage-like tissue than MSCs that contained more glycosaminoglycan (GAG), less type I collagen and only little alkaline phosphatase (ALP) activity. Hypoxic conditions did not increase extracellular matrix (ECM) production of ACPCs and MSCs significantly but improved the quality of the neo-cartilage tissue produced by MSCs. The creation of zonal agarose constructs with ACPCs in the upper layer and MSCs in the lower layer led to an ECM production in zonal hydrogels that lay in general in between the ECM production of non-zonal ACPC and MSC hydrogels. Even though zonal co-culture of ACPCs and MSCs did not increase ECM production, the two cell types influenced each other and, for example, modulated the staining intensities of type II and type I collagen in comparison to non-zonal constructs under normoxic and hypoxic conditions. In HA-SH/P(AGE-co-G) hydrogel, MSCs produced more ECM than ACPCs, but the ECM was limited to the pericellular region for both cell types. Zonal HASH/P(AGE-co-G) hydrogels resulted in a native-like zonal distribution of ECM as MSCs in the lower zone produced more ECM than ACPCs in the upper zone. It appeared that chondrogenesis of ACPCs was supported by hydrogels without biological attachment sites such as agarose, and that chondrogenesis of MSCs benefited from hydrogels with biological cues like HA. As HA is an attractive material for cartilage tissue engineering, and the HA-based hydrogel HA-SH/P(AGE-co-G) appeared to be beneficial for MSC chondrogenic differentiation, the contribution of HA to chondrogenic gene expression of MSCs was investigated. An upregulation of chondrogenic gene expression was found in 2D monolayer and 3D pellet culture of MSCs in response to HA supplementation, while gene expression of osteogenic and adipogenic transcription factors was not upregulated. MSCs, encapsulated in a HA-based hydrogel, showed upregulation of gene expression for chondrogenic, osteogenic and adipogenic differentiation markers as well as for stemness markers. In a 3D bioprinting process, using the HA-based hydrogel, gene expression levels of MSCs mostly did not change. Nevertheless, expression of three tested genes (COL2A1, SOX2, CD168) was downregulated in printed in comparison to cast constructs, underscoring the importance of closely monitoring cellular behaviour during and after the printing process. In summary, it was confirmed that ACPCs are a promising cell source for articular cartilage engineering with advantages over MSCs when they were cultured in a suitable hydrogel like agarose. The performance of the cells was strongly dependent on the hydrogel environment they were cultured in. The different chondrogenic performance of ACPCs and MSCs in agarose and HA-SH/P(AGE-co-G) hydrogels highlighted the importance of choosing suitable hydrogels for the different cell types used in articular cartilage tissue engineering. Hydrogels with high polymer content, such as the investigated HA-SH/P(AGE-co-G) hydrogels, can limit ECM distribution to the pericellular area and should be developed further towards less polymer content, leading to more homogenous ECM distribution of the cultured cells. The influence of HA on chondrogenic gene expression and on the balance between differentiation and maintenance of stemness in MSCs was demonstrated. More studies should be performed in the future to further elucidate the signalling functions of HA and the effects of 3D bioprinting in HA-based hydrogels. Taken together, the results of this thesis expand the knowledge in the area of articular cartilage engineering with regard to the rational combination of cell types and hydrogel materials and open up new possible approaches to the regeneration of articular cartilage tissue.}, subject = {Hyaliner Knorpel}, language = {en} } @phdthesis{Hrynevich2021, author = {Hrynevich, Andrei}, title = {Enhancement of geometric complexity and predictability of melt electrowriting for biomedical applications}, doi = {10.25972/OPUS-24764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247642}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis encompasses the development of the additive manufacturing technology melt electrowriting, in order to achieve the improved applicability in biomedical applications and design of scaffolds. Melt electrowriting is a process capable of producing highly resolved structures from microscale fibres. Nevertheless, there are parameters influencing the process and it has not been clear how they affect the printing result. In this thesis the influence of the processing and environmental parameters is investigated with the impact on their effect on the jet speed, fibre diameter and scaffold morphology, which has not been reported in the literature to date and significantly influences the printing quality. It was demonstrated that at higher ambient printing temperatures the fibres can be hampered to the extent that the individual fibres are completely molten together and increased air humidity intensifies this effect. It was also shown how such parameters as applied voltage, collector distance, feed pressure and polymer temperature influence the fibre diameter and critical translation speed. Based on these results, a detailed investigation of the fibre diameter control and printing of scaffolds with novel architectures was made. As an example, a 20-fold diameter ratio is obtained within one scaffold by changing the collector speed and the feed pressure during the printing process. Although the pressure change caused fibre diameter oscillations, different diameter fibres were successfully integrated into two scaffold designs, which were tested for mesenchymal stromal cell suspension and adipose tissue spheroid seeding. Further design and manufacturing aspects are discussed while jet attraction to the printed structures is illuminated in connection with the fibre positioning control of the multilayer scaffolds. The artefacts that appear with the increasing scaffold height of sinusoidal laydown patterns are counteracted by layer-by-layer path adjustment. For the prediction of a printing error of the first deposited layer, an algorithm is developed, that utilizes an empirical jet lag equation and the speed of fibre deposition. This model was able to predict the position of the printing fibre with up to ten times smaller error than the of the programmed path. The same model allows to qualitatively assess the fibre diameter change along the nonlinear pattern as well as to indicate the areas of the greatest pattern deformation with the growing scaffold height. Those results will be used in the later chapters for printing of the novel MEW structures for biomedical applications. In the final chapter the concept of multimodal scaffold was combined with the suspended fibre printing, for the manufacturing of the MEW scaffolds with controlled pore interconnectivity in three dimensions. Those scaffolds were proven to be a promising substate for the control of the neurite spreading of the chick DRG neurons.}, subject = {Elektrospinnen}, language = {en} } @phdthesis{Wiesner2020, author = {Wiesner, Miriam}, title = {Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro \& Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells}, doi = {10.25972/OPUS-18500}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Radakovic2020, author = {Radakovic, Dejan}, title = {Development of a Dialysis Graft Based on Tissue Engineering Methods}, doi = {10.25972/OPUS-20849}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Despite advancements of modern medicine, the number of patients with the the end-stage kidney disease keeps growing, and surgical procedures to establish and maintain a vascular access for hemodialysis are rising accordingly. Surgical access of choice remains autogenous arteriovenous fistula, whereas approach "fistula first at all costs" leads to failure in certain subgroups of patients. Modern synthetic vascular grafts fail to deliver long-term results comparable with AV fistula. With all that in mind, this work has an aim of developing a new alternative vascular graft, which can be used for hemodialysis access using the methods of TE, especially electrospinning technique. It is hypothesized that electrospun scaffold, made of PCL and collagen type I may assemble mechanical properties similar to native blood vessels. Seeding such electrospun scaffolds with human microvascular endothelial cells (hmvECs) and preconditioning with shear stress and continuous flow might achieve sufficient endothelial lining being able to resist acute thrombosis. One further topic considered on-site infections, which represents one of the most spread complications of dialysis therapy due to continuous needle punctures. The main hypothesis was that during electrospinning process, polymers can be blended with antibiotics with the aim of producing scaffolds with antimicrobial properties, which could lead to reducing the risk of on-site infection on one side, while not affecting the cell viability.}, subject = {Elektrospinnen}, language = {en} } @phdthesis{Kraehnke2019, author = {Kr{\"a}hnke, Martin}, title = {Chondrogenic differentiation of bone marrow-derived stromal cells in pellet culture and silk scaffolds for cartilage engineering - Effects of different growth factors and hypoxic conditions}, doi = {10.25972/OPUS-19299}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192999}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Articular cartilage lesions that occur upon intensive sport, trauma or degenerative disease represent a severe therapeutic problem. At present, osteoarthritis is the most common joint disease worldwide, affecting around 10\% of men and 18\% of women over 60 years of age (302). The poor self-regeneration capacity of cartilage and the lack of efficient therapeutic treatment options to regenerate durable articular cartilage tissue, provide the rationale for the development of new treatment options based on cartilage tissue engineering approaches (281). The integrated use of cells, biomaterials and growth factors to guide tissue development has the potential to provide functional substitutes of lost or damaged tissues (2,3). For the regeneration of cartilage, the availability of mesenchymal stromal cells (MSCs) or their recruitment into the defect site is fundamental (281). Due to their high proliferation capacity, the possibility to differentiate into chondrocytes and their potential to attract other progenitor cells into the defect site, bone marrow-derived mesenchymal stromal cells (BMSCs) are still regarded as an attractive cell source for cartilage tissue engineering (80). However, in order to successfully engineer cartilage tissue, a better understanding of basic principles of developmental processes and microenvironmental cues that guide chondrogenesis is required.}, subject = {Hypoxie}, language = {en} } @phdthesis{Wiesbeck2019, author = {Wiesbeck, Christina}, title = {Fabrication and characterization of NCO-sP(EO-stat-PO)- crosslinked and functionalized electrospun gelatin scaffolds for tissue engineering applications}, doi = {10.25972/OPUS-19098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In Tissue Engineering, scaffolds composed of natural polymers often show a distinct lack in stability. The natural polymer gelatin is highly fragile under physiological conditions, nevertheless displaying a broad variety of favorable properties. The aim of this study was to fabricate electrospun gelatin nanofibers, in situ functionalized and stabilized during the spinning process with highly reactive star polymer NCO-sP(EO-stat-PO) ("sPEG"). A spinning protocol for homogenous, non-beaded, 500 to 1000 nm thick nanofibers from different ratios of gelatin and sPEG was successfully established. Fibers were subsequently characterized and tested with SEM imaging, tensile tests, water incubation, FTIR, EDX, and cell culture. It was shown that adding sPEG during the spinning process leads to an increase in visible fiber crosslinking, mechanical stability, and stability in water. The nanofibers were further shown to be biocompatible in cell culture with RAW 264.7 macrophages.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Kremer2019, author = {Kremer, Antje}, title = {Tissue Engineering of a Vascularized Meniscus Implant}, doi = {10.25972/OPUS-18432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli.}, subject = {Meniskus}, language = {en} } @phdthesis{Kress2019, author = {Kreß, Sebastian}, title = {Development and proof of concept of a biological vascularized cell-based drug delivery system}, doi = {10.25972/OPUS-17865}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on-demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell-based therapies and the generation of complex and customized cell-specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co-cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc-TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies.}, subject = {Vaskularisation}, language = {en} } @phdthesis{Ruecker2019, author = {R{\"u}cker, Christoph}, title = {Development of a prevascularized bone implant}, doi = {10.25972/OPUS-17886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant's innate vasculature to the host's circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Nelke2019, author = {Nelke, Lena}, title = {Establishment and optimization of 3-dimensional mamma carcinoma models for therapy simulation and drug testing}, doi = {10.25972/OPUS-17228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172280}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Breast cancer is the most common cancer among women worldwide and the second most common cause of cancer death in the developed countries. As the current state of the art in first-line drug screenings is highly ineffective, there is an urgent need for novel test systems that allow for reliable predictions of drug sensitivity. In this study, a tissue engineering approach was used to successfully establish and standardize a 3-dimensional (3D) mamma carcinoma test system that was optimized for the testing of anti-tumour therapies as well as for the investigation of tumour biological issues. This 3D test system is based on the decellularised scaffold of a porcine small intestinal segment and represents the three molecular subsets of oestrogen receptor-positive, HER2/Neu-overexpressing and triple negative breast cancer (TNBC). The characterization of the test system with respect to morphology as well as the expression of markers for epithelial-mesenchymal transition (EMT) and differentiation indicate that the 3D tumour models cultured under static and dynamic conditions reflect tumour relevant features and have a good correlation with in vivo tumour tissue from the corresponding xenograft models. In this respect, the dynamic culture in a flow bioreactor resulted in the generation of tumour models that exhibited best reflection of the morphology of the xenograft material. Furthermore, the proliferation indices of 3D models were significantly reduced compared to 2-dimensional (2D) cell culture and therefore better reflect the in vivo situation. As this more physiological proliferation index prevents an overestimation of the therapeutic effect of cytostatic compounds, this is a crucial advantage of the test system compared to 2D culture. Moreover, it could be shown that the 3D models can recapitulate different tumour stages with respect to tumour cell invasion. The scaffold SISmuc with the preserved basement membrane structure allowed the investigation of invasion over this barrier which tumour cells of epithelial origin have to cross in in vivo conditions during the process of metastasis formation. Additionally, the data obtained from ultrastructural analysis and in situ zymography indicate that the invasion observed is connected to a tumour cell-associated change in the basement membrane in which matrix metalloproteinases (MMPs) are also involved. This features of the model in combination with the mentioned methods of analysis could be used in the future to mechanistically investigate invasive processes and to test anti-metastatic therapy strategies. The validation of the 3D models as a test system with respect to the predictability of therapeutic effects was achieved by the clinically relevant targeted therapy with the monoclonal antibody trastuzumab which induces therapeutic response only in patients with HER2/Neu-overexpressing mamma carcinomas due to its specificity for HER2. While neither in 2D nor in 3D models of all molecular subsets a clear reduction of cell viability or an increase in apoptosis could be observed, a distinct increase in antibody-dependent cell-mediated cytotoxicity (ADCC) was detected only in the HER2/NEU-overexpressing 3D model with the help of an ADCC reporter gene assay that had been adapted for the application in the 3D model in the here presented work. This correlates with the clinical observations and underlines the relevance of ADCC as a mechanism of action (MOA) of trastuzumab. In order to measure the effects of ADCC on the tumour cells in a direct way without the indirect measurement via a reporter gene, the introduction of an immunological component into the models was required. This was achieved by the integration of peripheral blood mononuclear cells (PBMCs), thereby allowing the measurement of the induction of tumour cell apoptosis in the HER2/Neu-overexpressing model. Hence, in this study an immunocompetent model could be established that holds the potential for further testing of therapies from the emergent field of cancer immunotherapies. Subsequently, the established test system was used for the investigation of scientific issues from different areas of application. By the comparison of the sensitivity of the 2D and 3D model of TNBC towards the water-insoluble compound curcumin that was applied in a novel nanoformulation or in a DMSO-based formulation, the 3D test system was successfully applied for the evaluation of an innovative formulation strategy for poorly soluble drugs in order to achieve cancer therapy-relevant concentrations. Moreover, due to the lack of targeted therapies for TNBC, the TNBC model was applied for testing novel treatment strategies. On the one hand, therapy with the WEE1 kinase inhibitor MK 1775 was evaluated as a single agent as well as in combination with the chemotherapeutic agent doxorubicin. This therapy approach did not reveal any distinct benefits in the 3D test system in contrast to testing in 2D culture. On the other hand, a novel therapy approach from the field of cellular immunotherapies was successfully applied in the TNBC 3D model. The treatment with T cells that express a chimeric antigen receptor (CAR) against ROR1 revealed in the static as well as in the dynamic model a migration of T cells into the tumour tissue, an enhanced proliferation of T cells as well as an efficient lysis of the tumour cells via apoptosis and therefore a specific anti-cancer effect of CAR-transduced T cells compared to control T cells. These results illustrate that the therapeutic application of CAR T cells is a promising strategy for the treatment of solid tumours like TNBC and that the here presented 3D models are suitable for the evaluation and optimization of cellular immunotherapies. In the last part of this work, the 3D models were expanded by components of the tumour stroma for future applications. By coculture with fibroblasts, the natural structures of the intestinal scaffold comprising crypts and villi were remodelled and the tumour cells formed tumour-like structures together with the fibroblasts. This tissue model displayed a strong correlation with xenograft models with respect to morphology, marker expression as well as the activation of dermal fibroblasts towards a cancer-associated fibroblast (CAF) phenotype. For the integration of adipocytes which are an essential component of the breast stroma, a coculture with human adipose-derived stromal/stem cells (hASCs) which could be successfully differentiated along the adipose lineage in 3D static as well as dynamic models was established. These models are suitable especially for the mechanistic analysis of the reciprocal interaction between tumour cells and adipocytes due to the complex differentiation process. Taken together, in this study a human 3D mamma carcinoma test system for application in the preclinical development and testing of anti-tumour therapies as well as in basic research in the field of tumour biology was successfully established. With the help of this modular test system, relevant data can be obtained concerning the efficacy of therapies in tumours of different molecular subsets and different tumour stages as well as for the optimization of novel therapy strategies like immunotherapies. In the future this can contribute to improve the preclinical screening and thereby to reduce the high attrition rates in pharmaceutical industry as well as the amount of animal experiments.}, subject = {Brustkrebs}, language = {en} } @phdthesis{Boeck2018, author = {B{\"o}ck, Thomas}, title = {Multifunctional Hyaluronic Acid / Poly(glycidol) Hydrogels for Cartilage Regeneration Using Mesenchymal Stromal Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Improved treatment options for the degenerative joint disease osteoarthritis (OA) are of major interest, since OA is one of the main sources of disability, pain, and socioeconomic burden worldwide [202]. According to epidemiological data, already 27 million people suffer from OA in the US [23]. Moreover, the WHO expects OA to be the fourth most common cause of disability in 2020 [203], illustrating the need for effective and long-lasting therapy options of severe cartilage defects. Despite numerous clinically available products for the treatment of cartilage defects [62], the development of more cartilage-specific materials is still at the beginning. Hyaluronic acid (HA) is a major component of the cartilaginous extracellular matrix (ECM) and inherently creates a cell-friendly niche by providing cell attachment and migration sites. Furthermore, it is known that the functional groups of HA are well suited for chemical modification. These characteristics render HA an attractive material for hydrogel-based tissue engineering approaches. Poly(glycidol) (PG) as chemical crosslinker basically features similar chemical characteristics as the widely used poly(ethylene glycol) (PEG), but provides additional side groups at each repeating unit that can be further chemically functionalized. With the introduction of PG as multifunctional crosslinker for HA gels, a higher cross-linking density and, accordingly, a greater potential for biomimetic functionalization may be achieved. However, despite the mentioned potential benefits, PG has not been used for cartilage regeneration approaches so far. The initial aim of the study was to set up and optimize a HA-based hydrogel for the chondrogenic differentiation of mesenchymal stromal cells (MSCs), using different amounts and variations of cross-linkers. Therefore, the hydrogel composition was optimized by the utilization of different PEG diacrylate (PEGDA) concentrations to cross-link thiol-modified HA (Glycosil, HA-SH) via Michael addition. We aimed to generate volumestable scaffolds that simultaneously enable a maximum of ECM deposition. Histological and biochemical analysis showed 0.4\% PEGDA as the most suitable concentration for these requirements (Section 5.1.2). In order to evaluate the impact of a differently designed cross-linker on MSC chondrogenesis, HA-SH was cross-linked with PEGTA (0.6\%) and compared to PEGDA (0.4\%) in a next step. Following this, acrylated PG (PG-Acr) as multifunctional cross-linker alternative to acrylated PEG was evaluated. It provides around five times more functional groups when utilized in PG-Acr (0.6\%) HA-SH hydrogels compared to PEGTA (0.6\%) HA-SH hydrogels, thus enabling higher degrees of biomimetic functionalization. Determination of cartilage-specific ECM components showed no substantial differences between both cross-linkers while the deposition of cartilaginous matrix appeared more homogeneous in HA-SH PG-Acr gels. Taken together, we were able to successfully increase the possibilities for biomimetic functionalization in the developed HA-SH hydrogel system by the introduction of PG-Acr as cross-linker without negatively affecting MSC chondrogenesis (Section 5.1.3). The next part of this thesis focused extensively on the biomimetic functionalization of PG-Acr (0.6\%) cross-linked HA-SH hydrogels. Here, either biomimetic peptides or a chondrogenic growth factor were covalently bound into the hydrogels. Interestingly, the incorporation of a N-cadherin mimetic (HAV), a collagen type II binding (KLER), or a cell adhesion-mediating peptide (RGD) yielded no improvement of MSC chondrogenesis. For instance, the covalent binding of 2.5mM HAV changed morphology of cell nuclei and reduced GAG production while the incorporation of 1.0mM RGD impaired collagen production. These findings may be attributed to the already supportive conditions of the employed HA-based hydrogels for chondrogenic differentiation. Most of the previous studies reporting positive peptide effects on chondrogenesis have been carried out in less supportive PEG hydrogels or in significantly stiffer MeHA-based hydrogels [99, 101, 160]. Thus, the incorporation of peptides may be more important under unfavorable conditions while inert gel systems may be useful for studying single peptide effects (Section 5.2.1). The chondrogenic factor transforming growth factor beta 1 (TGF-b1) served as an example for growth factor binding to PG-Acr. The utilization of covalently bound TGF-b1 may thereby help overcome the need for repeated administration of TGF-b1 in in vivo applications, which may be an advantage for potential clinical application. Thus, the effect of covalently incorporated TGF-b1 was compared to the effect of the same amount of TGF-b1 without covalent binding (100nM TGF-b1) on MSC chondrogenesis. It was successfully demonstrated that covalent incorporation of TGF-b1 had a significant positive effect in a dose-dependent manner. Chondrogenesis of MSCs in hydrogels with covalently bound TGF-b1 showed enhanced levels of chondrogenesis compared to hydrogels into which TGF-b1 was merely mixed, as shown by stronger staining for GAGs, total collagen, aggrecan and collagen type II. Biochemical evaluation of GAG and collagen amounts, as well as Western blot analysis confirmed the histological results. Furthermore, the positive effect of covalently bound TGF-b1 was shown by increased expression of chondrogenic marker genes COL2A1, ACAN and SOX9. In summary, covalent growth factor incorporation utilizing PG-Acr as cross-linker demonstrated significant positive effects on chondrogenic differentiation of MSCs (Section 5.2.2). In general, PG-Acr cross-linked HA hydrogels generated by Michael addition represent a versatile hydrogel platform due to their high degree of acrylate functionality. These hydrogels may further offer the opportunity to combine several biological modifications, such as the incorporation of biomimetic peptides together with growth factors, within one cell carrier. A proof-of-principle experiment demonstrated the suitability of pure PG gels for studying single peptide effects. Here, the hydrogels were generated by the utilization of thiol-ene-click reaction. In this setting, without the supportive background of hyaluronic acid, MSCs showed enhanced chondrogenic differentiation in response to the incorporation of 1.0mM HAV. This was demonstrated by staining for GAGs, the cartilage-specific ECM molecules aggrecan and type II collagen, and by increased GAG and total collagen amounts shown by biochemical analysis. Thus, pure PG gels exhibit the potential to study the effects and interplay of peptides and growth factors in a highly modifiable, bioinert hydrogel environment. The last section of the thesis was carried out as part of the EU project HydroZONES that aims to develop and generate zonal constructs. The importance of zonal organization has attracted increased attention in the last years [127, 128], however, it is still underrepresented in tissue engineering approaches so far. Thus, the feasibility of zonal distribution of cells in a scaffold combining two differently composed hydrogels was investigated. A HA-SH(FMZ) containing bottom layer was generated and a pure PG top layer was subsequently cast on top of it, utilizing both times thiol-ene-click reaction. Indeed, stable, hierarchical constructs were generated that allowed encapsulated MSCs to differentiate chondrogenically in both zones as shown by staining for GAGs and collagen type II, and by quantification of GAG amount. Thus, the feasibility of differently composed zonal hydrogels utilizing PG as a main component was successfully demonstrated (Section 5.4). With the first-time utilization and evaluation of PG-Acr as versatile multifunctional cross-linker for the preparation of Michael addition-generated HA-SH hydrogels in the context of cartilage tissue engineering, a highly modifiable HA-based hydrogel system was introduced. It may be used in future studies as an easily applicable and versatile toolbox for the generation of biomimetically functionalized hydrogels for cell-based cartilage regeneration. The introduction of reinforcement structures to enhance mechanical resistance may thereby further increase the potential of this system for clinical applications. Additionally, it was also demonstrated that thiol-ene clickable hydrogels can be used for the generation of cell-laden, pure PG gels or for the generation of more complex, coherent zonal constructs. Furthermore, thiol-ene clickable PG hydrogels have already been further modified and successfully been used in 3D bioprinting experiments [204]. 3D bioprinting, as part of the evolving biofabrication field [205], offers the possibilities to generate complex and hierarchical structures, and to exactly position defined layers, yet at the same time alters the requirements for the utilized hydrogels [159, 206-209]. Since a robust chondrogenesis of MSCs was demonstrated in the thiol-ene clickable hydrogel systems, they may serve as a basis for the development of hydrogels as so called bioinks which may be utilized in more sophisticated biofabrication processes.}, subject = {Hyalurons{\"a}ure}, language = {en} } @phdthesis{Rossi2017, author = {Rossi, Angela Francesca}, title = {Development of functionalized electrospun fibers as biomimetic artificial basement membranes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Schweinlin2016, author = {Schweinlin, Matthias Oliver}, title = {Development of advanced human intestinal in vitro models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142571}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Stuckensen2016, author = {Stuckensen, Kai}, title = {Fabrication of hierarchical cell carrier matrices for tissue regeneration by directional solidification}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145510}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The key hypothesis of this work represented the question, if mimicking the zonal composition and structural porosity of musculoskeletal tissues influences invading cells positively and leads to advantageous results for tissue engineering. Conventional approaches in tissue engineering are limited in producing monolithic "scaffolds" that provide locally variating biological key signals and pore architectures, imitating the alignment of collagenous fibres in bone and cartilage tissues, respectively. In order to fill this gap in available tissue engineering strategies, a new fabrication technique was evolved for the production of scaffolds to validate the hypothesis. Therefore, a new solidification based platform procedure was developed. This process comprises the directional solidification of multiple flowable precursors that are "cryostructured" to prepare a controlled anisotropic pore structure. Porous scaffolds are attained through ice crystal removal by lyophilisation. Optionally, electrostatic spinning of polymers may be applied to provide an external mesh on top or around the scaffolds. A consolidation step generates monolithic matrices from multi zonal structures. To serve as matrix for tissue engineering approaches or direct implantation as medical device, the scaffold is sterilized. An Adjustable Cryostructuring Device (ACD) was successively developed; individual parts were conceptualized by computer aided design (CAD) and assembled. During optimisation, a significant performance improvement of the ACDs accessible external temperature gradient was achieved, from (1.3 ± 0.1) K/mm to (9.0 ± 0.1) K/mm. Additionally, four different configurations of the device were made available that enabled the directional solidification of collagenous precursors in a highly controlled manner with various sample sizes and shapes. By using alginate as a model substance the process was systematically evaluated. Cryostructuring diagraphs were analysed yielding solidification parameters, which were associated to pore sizes and alignments that were determined by image processing. Thereby, a precise control over pore size and alignment through electrical regulation of the ACD could be demonstrated. To obtain tissue mimetic scaffolds for the musculoskeletal system, collagens and calcium phosphates had to be prepared to serve as raw materials. Extraction and purification protocols were established to generate collagen I and collagen II, while the calcium phosphates brushite and hydroxyapatite were produced by precipitation reactions. Besides the successive augmentation of the ACD also an optimization of the processing steps was crucial. Firstly, the concentrations and the individual behaviour of respective precursor components had to be screened. Together with the insights gained by videographic examination of solidifying collagen solutions, essential knowledge was gained that facilitated the production of more complex scaffolds. Phenomena of ice crystal growth during cryostructuring were discussed. By evolutionary steps, a cryostructuring of multi-layered precursors with consecutive anisotropic pores could be achieved and successfully transferred from alginate to collagenous precursors. Finally, very smooth interfaces that were hardly detectable by scanning electron microscopy (SEM) could be attained. For the used collagenous systems, a dependency relation between adjustable processing parameters and different resulting solidification morphologies was created. Dehydrothermal-, diisocyanate-, and carbodiimide- based cross linking methods were evaluated, whereby the "zero length" cross linking by carbodiimide was found to be most suitable. Afterwards, a formulation for the cross linking solution was elaborated, which generated favourable outcomes by application inside a reduced pressure apparatus. As a consequence, a pore collapse during wet chemical cross linking could be avoided. Complex monolithic scaffolds featuring continuous pores were fabricated that mimicked structure and respective composition of different areas of native tissues by the presence of biochemical key stimulants. At first, three types of bone scaffolds were produced from collagen I and hydroxyapatite with appropriate sizes to fit critical sized defects in rat femurs. They either featured an isotropic or anisotropic porosity and partly also contained glycosaminoglycans (GAGs). Furthermore, meniscus scaffolds were prepared by processing two precursors with biomimetic contents of collagen I, collagen II and GAGs. Here, the pore structures were created under boundary conditions, which allowed an ice crystal growth that was nearly orthogonal to the external temperature gradient. Thereby, the preferential alignment of collagen fibres in the natural meniscus tissue could be mimicked. Those scaffolds owned appropriate sizes for cell culture in well plates or even an authentic meniscus shape and size. Finally, osteochondral scaffolds, sized to either fit well plates or perfusion reactors for cell culture, were fabricated to mimic the composition of subchondral bone and different cartilage zones. Collagen I and the resorbable calcium phosphate brushite were used for the subchondral zone, whereas the cartilage zones were composed out of collagen I, collagen II and tissue mimetic contents of GAGs. The pore structure corresponded to the one that is dominating the volume of natural osteochondral tissue. Energy dispersive X-ray spectroscopy (EDX) and SEM were used to analyse the composition and pore structure of the individual scaffold zones, respectively. The cross section pore diameters were determined to (65 ± 25) µm, (88 ± 35) µm and(93 ± 42) µm for the anisotropic, the isotropic and GAG containing isotropic bone scaffolds. Furthermore, the meniscus scaffolds showed pore diameters of (93 ± 21) µm in the inner meniscus zone and (248 ± 63) µm inside the outer meniscus zone. Pore sizes of (82 ± 25) µm, (83 ± 29) µm and (85 ± 39) µm were present inside the subchondral, the lower chondral and the upper chondral zone of osteochondral scaffolds. Depending on the fabrication parameters, the respective scaffold zones were also found to feature a specific micro- and nanostructure at their inner surfaces. Degradation studies were carried out under physiological conditions and resulted in a mean mass loss of (0.52 ± 0.13) \%, (1.56 ± 0.10) \% and (0.80 ± 0.10) \% per day for bone, meniscus and osteochondral scaffolds, respectively. Rheological measurements were used to determine the viscosity changes upon cooling of different precursors. Micro computer tomography (µ-CT) investigations were applied to characterize the 3D microstructure of osteochondral scaffolds. To obtain an osteochondral scaffold with four zones of tissue mimetic microstructure alignment, a poly (D, L-lactide-co-glycolide) mesh was deposited on the upper chondral zone by electrostatic spinning. In case of the bone scaffolds, the retention / release capacity of bone morphogenetic protein 2 (BMP-2) was evaluated by an enzyme linked immunosorbent assay (ELISA). Due to the high presence of attractive BMP binding sites, only less than 0.1 \% of the initially loaded cytokine was released. The suitability of combining the cryostructuring process with 3D powder printed calcium phosphate substrates was evaluated with osteochondral scaffolds, but did not appear to yield more preferable results than the non-combined approach. A new custom build confined compression setup was elaborated together with a suitable evaluation procedure for the mechanical characterisation under physiological conditions. For bone and cartilage scaffolds, apparent elastic moduli of (37.6 ± 6.9) kPa and (3.14 ± 0.85) kPa were measured. A similar behaviour of the scaffolds to natural cartilage and bone tissue was demonstrated in terms of elastic energy storage. Under physiological frequencies, less than 1.0 \% and 0.8 \% of the exerted energy was lost for bone and cartilage scaffolds, respectively. With average relaxation times of (0.613 ± 0.040) sec and (0.815 ± 0.077) sec, measured for the cartilage and bone scaffolds, they respond four orders of magnitude faster than the native tissues. Additionally, all kinds of produced scaffolds were able to withstand cyclic compression at un-physiological frequencies as high as 20 Hz without a loss in structural integrity. With the presented new method, scaffolds could be fabricated whose extent in mimicking of native tissues exceeded the one of scaffolds producible by state of the art methods. This allowed a testing of the key hypothesis: The biological evaluation of an anisotropic pore structure in vivo revealed a higher functionality of immigrated cells and led finally to advantageous healing outcomes. Moreover, the mimicking of local compositions in combination with a consecutive anisotropic porosity that approaches native tissue structures could be demonstrated to induce zone specific matrix remodelling in stem cells in vitro. Additionally, clues for a zone specific chondrogenic stem cell differentiation were attained without the supplementation of growth factors. Thereby, the hypothesis that an increased approximation of the hierarchically compositional and structurally anisotropic properties of musculoskeletal tissues would lead to an improved cellular response and a better healing quality, could be confirmed. With a special focus on cell free in situ tissue engineering approaches, the insights gained within this thesis may be directly transferred to clinical regenerative therapies.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Wittmann2014, author = {Wittmann, Katharina}, title = {Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm 'replace with alike', adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Werner2014, author = {Werner, Katharina Julia}, title = {Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{HaddadWeber2010, author = {Haddad-Weber, Meike}, title = {Development of stem cell-based ACL- and tendon reconstruction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Ruptures of the anterior cruciate ligament (ACL) and defects of the rotator cuff represent the most common ligament and tendon injuries in knee and shoulder. Both injuries represent significant implications for the patients. After an injury, the ACL and the rotator cuff both exhibit poor intrinsic healing capacities. In order to prevent further defects such as arthritis of the knee and fatty infiltration of the rotator cuff, surgical interaction is essential. In both cases, the currently used surgical techniques are far from optimal because even after the therapy many patients report problems ranging from pain and reduced mobility to complete dysfunction of the involved joint and muscles. Tissue engineering may be a possible solution. It is a promising field of regenerative medicine and might be an advantageous alternative for the treatment of musculoskeletal injuries and diseases in the near future. In this thesis, different tissue engineering based approaches were investigated. For the reconstruction of damaged or diseased ligaments and tendons, the use of MSCs and gene therapy with growth factors is especially suitable and possesses a great therapeutic potential. Therefore, the first method studied and tested in this thesis was the development of a biomaterial based construct for the repair of a ruptured ACL. The second approach represents a cell based strategy for the treatment of the fatty infiltration in the rotator cuff. The third approach was a combined cell, biomaterial, and growth factor based strategy for ACL ruptures. Biomaterial based ACL construct The implant is currently tested in a preclinical in vivo study in mini pigs. This proof-of-principle study is performed to validate the functional capability of the collagen fiber based implant under load in vivo and its population with fibroblasts which produce a ligamentogenic matrix. Cell based treatment of the fatty infiltration in the rotator cuff Regarding the treatment of the fatty infiltration of the rotator cuff in a rabbit model, the in vivo results are also promising. The group treated with autologous MSCs (+MSC group) showed a lower fat content than the untreated group (-MSC group) 6 weeks after the treatment. Furthermore, the SSP muscle of the MSC-treated animals revealed macroscopically and microscopically only few differences compared to the healthy control group. The exact underlying mechanisms leading to the positive results of the treatment are not yet fully understood and have therefore to be further investigated in the future. Cell, biomaterial, and growth factor based treatment of ACL ruptures Studies described in current literature show that collagen hydrogel scaffolds are not ideal for a complete ligament or tendon reconstruction, because of their insufficient mechanical stability. Introduced as an alternative and superior therapy, the combined strategy used in this thesis proves that the cultivation of BMP-12, -13, and IGF-1 transduced MSCs and ACL fibroblasts in a collagen hydrogel is successful. The results of the performed in vitro study reveal that the cells exhibit a fibroblastic appearance and produce a ligamentogenic matrix after 3 weeks. Furthermore, the adenoviral transduction of MSCs and ACL fibroblasts showed no negative effects on proliferation or viability of the cells nor was apoptosis caused. Therefore, the application of these cells represents a possible future therapy for a partial ligament and tendon rupture where the mechanical stability of the remaining ligament or tendon is sufficient and the healing can be improved substantially by this therapy. In general, prospective randomized clinical trials still have to prove the postulated positive effect of MSCs for the treatment of various musculoskeletal diseases, but the results obtained here are already very promising. Ideally, the treatment with MSCs is superior compared to the standard surgical procedures. Because of current safety issues the use of genetically modified cells cannot be expected to be applied clinically in the near future. In summary, the different tissue engineering approaches for novel therapies for musculoskeletal injuries and diseases invested in this thesis showed very promising results and will be further developed and tested in preclinical and clinical trials.}, subject = {Kreuzband}, language = {en} } @phdthesis{Heymer2008, author = {Heymer, Andrea}, title = {Chondrogenic differentiation of human mesenchymal stem cells and articular cartilage reconstruction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29448}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Articular cartilage defects are still one of the major challenges in orthopedic and trauma surgery. Today, autologous chondrocyte transplantation (ACT), as a cell-based therapy, is an established procedure. However, one major limitation of this technique is the loss of the chondrogenic phenotype during expansion. Human mesenchymal stem cells (hMSCs) have an extensive proliferation potential and the capacity to differentiate into chondrocytes when maintained under specific conditions. They are therefore considered as candidate cells for tissue engineering approaches of functional cartilage tissue substitutes. First in this study, hMSCs were embedded in a collagen type I hydrogel to evaluate the cartilaginous construct in vitro. HMSC collagen hydrogels cultivated in different culture media showed always a marked contraction, most pronounced in chondrogenic differentiation medium supplemented with TGF-ß1. After stimulation with chondrogenic factors (dexamethasone and TGF-ß1) hMSCs were able to undergo chondrogenesis when embedded in the collagen type I hydrogel, as evaluated by the temporal induction of cartilage-specific gene expression. Furthermore, the cells showed a chondrocyte-like appearance and were homogeneously distributed within a proteoglycan- and collagen type II-rich extracellular matrix, except a small area in the center of the constructs. In this study, chondrogenic differentiation could not be realized with every hMSC preparation. With the improvement of the culture conditions, e.g. the use of a different FBS lot in the gel fabrication process, a higher amount of cartilage-specific matrix deposition could be achieved. Nevertheless, the large variations in the differentiation capacity display the high donor-to-donor variability influencing the development of a cartilaginous construct. Taken together, the results demonstrate that the collagen type I hydrogel is a suitable carrier matrix for hMSC-based cartilage regeneration therapies which present a promising future alternative to ACT. Second, to further improve the quality of tissue-engineered cartilaginous constructs, mechanical stimulation in specific bioreactor systems are often employed. In this study, the effects of mechanical loading on hMSC differentiation have been examined. HMSC collagen hydrogels were cultured in a defined chondrogenic differentiation medium without TGF-ß1 and subjected to a combined mechanical stimulation protocol, consisting of perfusion and cyclic uniaxial compression. Bioreactor cultivation neither affected overall cell viability nor the cell number in collagen hydrogels. Compared with non-loaded controls, mechanical loading promoted the gene expression of COMP and biglycan and induced an up-regulation of matrix metalloproteinase 3. These results circumstantiate that hMSCs are sensitive to mechanical forces, but their differentiation to chondrocytes could not be induced. Further studies are needed to identify the specific metabolic pathways which are altered by mechanical stimulation. Third, for the development of new cell-based therapies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. This study aimed at analyzing systematically the performance and biological impact of a simple and efficient labeling protocol for hMSCs. Very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabeled cells, VSOP-labeling did neither influence significantly the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect the differentiation capacity of hMSCs. The efficiency of the labeling protocol was assessed with high resolution MR imaging at 11.7 Tesla. VSOP-labeled hMSCs were visualized in a collagen type I hydrogel indicated by distinct hypointense spots in the MR images, resulting from an iron specific loss of signal intensity. This was confirmed by prussian blue staining. In summary, this labeling technique has great potential to visualize hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging.}, subject = {Gelenkknorpel}, language = {en} }