@phdthesis{Beck2019, author = {Beck, Sebastian}, title = {Using optogenetics to influence the circadian clock of \(Drosophila\) \(melanogaster\)}, doi = {10.25972/OPUS-18495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184952}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms' physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s. The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network. The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift. Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all.}, subject = {Chronobiologie}, language = {en} } @phdthesis{Gao2017, author = {Gao, Shiqiang}, title = {Characterizing new photoreceptors to expand the Optogenetic toolbox}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optogenetics is a method to control the cell activity with light by expression of a natural or engineered photoreceptor via genetic modification technology. Optogenetics early success came with the light-gated cation channel "Channelrhodopsin-2" in neurons and expanded from neuroscience to other research fields such as cardiac research and cell signaling, also due to the enrichment by new photoreceptors. In this study, I focus on searching and characterizing new photoreceptors to expand the optogenetic tool box. In this work I characterize three newly discovered microbial rhodopsins and some engineered mutants of them. The first rhodopsin is a proton pump from the diatom Fragilariopsis cylindrus, Fragilariopsis Rhodopsin or abbreviated: FR. I cloned the full-length FR and proved it to be a light-activated proton pump with high efficacy in comparison to Bacteriorhodopsin (BR). During this study, I also developed a new method to improve the plasma membrane targeting of several microbial rhodopsins. I also obtained a FR mutant (channel-like FR or chFR) which behaves like a light-gated proton channel. FR can be used for optogenetic hyperpolarization or alkalization of a cell while the chFR could be used for depolarization or lowering of the cellular pH. The induction of FR expression under iron-limited conditions in the diatom indicated an alternative energy generation mechanism of F. cylindrus when iron-containing enzymes are scarce. I then characterized a new microbial rhodopsin with novel light-regulated Guanylyl Cyclase (GC) activity. This rhodopsin guanylyl cyclase from the fungus Blastocladiella emersonii (B.e. CyclaseOpsin or BeCyclOp) has been proven by me to be an efficient light-gated GC with high specificity and fast kinetics. BeCyclOp also has a novel structure with eight transmembrane helices, containing a long cytosolic N-terminus which participates in the tight regulation of the GC activity. In collaboration with Prof. Alexander Gottschalk (Univ. Frankfurt/M.), BeCyclOp has been tested in muscle cells and sensory neurons of Caenorhabditis elegans and proven to be a powerful optogenetic tool in a living animal. I also generated a BeCyclOp mutant with enhanced light sensitivity. Already more than ten years ago, guanylyl cyclase rhodopsins were suggested to exist in Chlamydomonas reinhardtii by analyzing genomic sequence data. But until now no functional proof existed. By further cloning and sequencing I discovered such a rhodopsin with light-regulated guanylyl cyclase activity. This functional Cyclaseopsin (COP6c) is quite different to BeCyclOp, as it was proven to be a light-inhibited GC. Cop6c is much larger than BeCyclOp with a His-Kinase and a response regulator domain between the rhodopsin and the cyclase domain. I also introduced a new strategy for generating optogenetic tools by fusing the photoactivated adenylyl cyclase bPAC to two different CNG channels. These new tools function via light-gated cAMP production and subsequent CNG channel activation. These tools combined the properties of bPAC (highly sensitive to blue light) and CNG channels (high single-channel conductance and high Ca2+ permeability), as demonstrated by expression in Xenopus oocytes. As a further benefit the fusing of bPAC to CNG channels leads to a bPAC with a more than tenfold reduced dark activity which is a valuable improvement for bPAC itself as an optogenetic tool.}, subject = {Photorezeptor}, language = {en} } @phdthesis{Rumpf2023, author = {Rumpf, Florian}, title = {Optogenetic stimulation of AVP neurons in the anterior hypothalamus promotes wakefulness}, doi = {10.25972/OPUS-31549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-315492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The mammalian central clock, located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, controls circadian rhythms in behaviour such as the sleep-wake cycle. It is made up of approximately 20,000 heterogeneous neurons that can be classified by their expression of neuropeptides. There are three major populations: AVP neurons (arginine vasopressin), VIP neurons (vasoactive intestinal peptide), and GRP neurons (gastrin releasing peptide). How these neuronal clusters form functional units to govern various aspects of rhythmic behavior is poorly understood. At a molecular level, biological clocks are represented by transcriptional-posttranslational feedback loops that induce circadian oscillations in the electrical activity of the SCN and hence correlate with behavioral circadian rhythms. In mammals, the sleep wake cycle can be accurately predicted by measuring electrical muscle and brain activity. To investigate the link between the electrical activity of heterogeneous neurons of the SCN and the sleep wake cycle, we optogenetically manipulated AVP neurons in vivo with SSFO (stabilized step function opsin) and simultaneously recorded an electroencephalogram (EEG) and electromyogram (EMG) in freely moving mice. SSFO-mediated stimulation of AVP positive neurons in the anterior hypothalamus increased the total amount of wakefulness during the hour of stimulation. Interestingly, this effect led to a rebound in sleep in the hour after stimulation. Markov chain sleep-stage transition analysis showed that the depolarization of AVP neurons through SSFO promotes the transition from all states to wakefulness. After the end of stimulation, a compensatory increase in transitions to NREM sleep was observed. Ex vivo, SSFO activation in AVP neurons causes depolarization and modifies the activity of AVP neurons. Therefore, the results of this thesis project suggest an essential role of AVP neurons as mediators between circadian rhythmicity and sleep-wake behaviour.}, subject = {Schlaf}, language = {en} } @phdthesis{Tang2021, author = {Tang, Ruijing}, title = {Optogenetic Methods to Regulate Water Transport and Purify Proteins}, doi = {10.25972/OPUS-23173}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Water transport through the water channels, aquaporins (AQPs), is involved in epithelial fluid secretion and absorption, cell migration, brain edema, adipocyte metabolism, and other physiological or pathological functions. Modulation of AQP function has therapeutic potential in edema, cancer, obesity, brain injury, glaucoma, etc. The function of AQPs is in response to the osmotic gradient that is formed by the concentration differences of ions or small molecules. In terms of brain edema, it is a pathophysiological condition, resulting from dysfunction of the plasma membrane that causes a disorder of intracellular ion homeostasis and thus increases intracellular fluid content. Optogenetics can be used to regulate ion transport easily by light with temporal and spatial precision. Therefore, if we control the cell ion influx, boosting the water transport through AQPs, this will help to investigate the pathological mechanisms in e.g. brain edema. To this end, I investigated the possibility for optogenetic manipulating water transport in Xenopus oocytes. The main ions in Xenopus oocyte cytoplasm are ~10 mM Na+, ~50 mM Cl- and ~100 mM K+, similar to the mammalian cell physiological condition. Three light-gated channels, ChR2-XXM 2.0 (light-gated cation channel), GtACR1 (light-gated anion channel) and SthK-bPAC (light-gated potassium channel), were used in my study to regulate ion transport by light and thus manipulate the osmotic gradient and water transport. To increase water flow, I also used coexpression of AQP1. When expressing ChR2-XXM 2.0 and GtACR1 together, mainly Na+ influx was triggered by ChR2-XXM2.0 under blue light illumination, which then made the membrane potential more positive and facilitated Cl- influx by GtACR1. Due to this inward movement of Na+ and Cl-, the osmotic gradient was formed to trigger water influx through AQP1. Large amounts of water uptake can speedily increase the oocyte volume until membrane rupture. Next, when co-expressing GtACR1 and SthK-bPAC, water efflux will be triggered with blue light because of the light-gated KCl efflux and then oocyte shrinking could be observed. I also developed an optogenetic protein purification method based on a light-induced protein interactive system. Currently, the most common protein purification method is based on affinity chromatography, which requires different chromatography columns and harsh conditions, such as acidic pH 4.5 - 6 and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. The change in conditions could influence the activity of target proteins. So, an easy and flexible protein purification method based on the photo-induced protein interactive system iLID was designed, which regulates protein binding with light in mild conditions and does not require a change of solution composition. For expression in E. coli, the blue light-sensitive part of iLID, the LOV2 domain, was fused with a membrane anchor and expressed in the plasma membrane, and the other binding partner, SspB, was fused with the protein of interest (POI), expressed in the cytosol. The plasma membrane fraction and the soluble cytosolic fraction of E. coli can be easily separated by centrifugation. The SspB-POI can be then captured to the membrane fraction by light stimulation and released to clean buffer in the dark after washing. This method does not require any specific column and functions in mild conditions, which are very flexible at scale and will facilitate extensive protein engineering and purification of proteins, sensitive to changed buffer conditions.}, language = {en} } @article{TangYangNageletal.2021, author = {Tang, Ruijing and Yang, Shang and Nagel, Georg and Gao, Shiqiang}, title = {mem-iLID, a fast and economic protein purification method}, series = {Bioscience Reports}, volume = {41}, journal = {Bioscience Reports}, number = {7}, doi = {10.1042/BSR20210800}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261420}, year = {2021}, abstract = {Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein-protein interaction.}, language = {en} } @phdthesis{Yang2022, author = {Yang, Shang}, title = {Characterization and engineering of photoreceptors with improved properties for optogenetic application}, doi = {10.25972/OPUS-20527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205273}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Optogenetics became successful in neuroscience with Channelrhodopsin-2 (ChR2), a light-gated cation channel from the green alga Chlamydomonas reinhardtii, as an easy applicable tool. The success of ChR2 inspired the development of various photosensory proteins as powerful actuators for optogenetic manipulation of biological activity. However, the current optogenetic toolbox is still not perfect and further improvements are desirable. In my thesis, I engineered and characterized several different optogenetic tools with new features. (i) Although ChR2 is the most often used optogenetic actuator, its single-channel conductance and its Ca2+ permeability are relatively low. ChR2 variants with increased Ca2+ conductance were described recently but a further increase seemed possible. In addition, the H+ conductance of ChR2 may lead to cellular acidification and unintended pH-related side effects upon prolonged illumination. Through rational design, I developed several improved ChR2 variants with larger photocurrent, higher cation selectivity, and lower H+ conductance. (ii) The light-activated inward chloride pump NpHR is a widely used optogenetic tool for neural silencing. However, pronounced inactivation upon long time illumination constrains its application for long-lasting neural inhibition. I found that the deprotonation of the Schiff base underlies the inactivation of NpHR. Through systematically exploring optimized illumination schemes, I found illumination with blue light alone could profoundly increase the temporal stability of the NpHR-mediated photocurrent. A combination of green and violet light eliminates the inactivation effect, similar to blue light, but leading to a higher photocurrent and therefore better light-induced inhibition. (iii) Photoactivated adenylyl cyclases (PACs) were shown to be useful for light-manipulation of cellular cAMP levels. I developed a convenient in-vitro assay for soluble PACs that allows their reliable characterization. Comparison of different PACs revealed that bPAC from Beggiatoa is the best optogenetic tool for cAMP manipulation, due to its high efficiency and small size. However, a residual activity of bPAC in the dark is unwanted and the cytosolic localization prevents subcellular precise cAMP manipulation. I therefore introduced point mutations into bPAC to reduce its dark activity. Interestingly, I found that membrane targeting of bPAC with different linkers can remarkably alter its activity, in addition to its localization. Taken together, a set of PACs with different activity and subcellular localization were engineered for selection based on the intended usage. The membrane-bound PM-bPAC 2.0 with reduced dark activity is well-tolerated by hippocampal neurons and reliably evokes a transient photocurrent, when co-expression with a CNG channel. (iv) Bidirectional manipulation of cell activity with light of different wavelengths is of great importance in dissecting neural networks in the brain. Selection of optimal tool pairs is the first and most important step for dual-color optogenetics. Through N- and C-terminal modifications, an improved ChR variant (i.e. vf-Chrimson 2.0) was engineered and selected as the red light-controlled actuator for excitation. Detailed comparison of three two-component potassium channels, composed of bPAC and the cAMP-activated potassium channel SthK, revealed the superior properties of SthK-bP. Combining vf-Chrimson 2.0 and improved SthK-bP "SthK(TV418)-bP" could reliably induce depolarization by red light and hyperpolarization by blue light. A residual tiny crosstalk between vf-Chrimson 2.0 and SthK(TV418)-bP, when applying blue light, can be minimized to a negligible level by applying light pulses or simply lowering the blue light intensity.}, language = {en} }