@article{AwadOthmanStopper2017, author = {Awad, Eman and Othman, Eman M. and Stopper, Helga}, title = {Effects of resveratrol, lovastatin and the mTOR-inhibitor RAD-001 on insulin-induced genomic damage in vitro}, series = {Molecules}, volume = {22}, journal = {Molecules}, number = {12}, doi = {10.3390/molecules22122207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159260}, pages = {2207}, year = {2017}, abstract = {Diabetes mellitus (DM) is one of the major current health problems due to lifestyle changes. Before diagnosis and in the early years of disease, insulin blood levels are elevated. However, insulin generates low levels of reactive oxygen species (ROS) which are integral to the regulation of a variety of intracellular signaling pathways, but excess levels of insulin may also lead to DNA oxidation and DNA damage. Three pharmaceutical compounds, resveratrol, lovastatin and the mTOR-inhibitor RAD-001, were investigated due to their known beneficial effects. They showed protective properties against genotoxic damage and significantly reduced ROS after in vitro treatment of cultured cells with insulin. Therefore, the selected pharmaceuticals may be attractive candidates to be considered for support of DM therapy.}, language = {en} } @article{BankogluTschoppSchmittetal.2016, author = {Bankoglu, Ezgi Eyluel and Tschopp, Oliver and Schmitt, Johannes and Burkard, Philipp and Jahn, Daniel and Geier, Andreas and Stopper, Helga}, title = {Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0166956}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146970}, pages = {e0166956}, year = {2016}, abstract = {Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin.}, language = {en} } @article{BarresSchmidSendtneretal.1993, author = {Barres, B. A. and Schmid, R. and Sendtner, Michael and Raff, Martin C.}, title = {Multiple extracellular signals are required for long-term oligodendrocyte survival}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42644}, year = {1993}, abstract = {We showed previously that oligodendrocytes and their precursors require continuous signalling by protein trophic factors to avoid programmed cell death in culture. Here we show that three classes of such trophic factors promote oligodendrocyte survival in vitro: (1) insulin and insulin-like growth factors (IGFs), (2) neurotrophins, particularly neurotrophin-3 (NT -3), and (3) ciliary-neurotrophic factor (CNTF), leukemia inhibitory factor (LIF) and interleukin 6 (IL-6). A single factor, or combinations of factors within the same class, promote only short-term survival of oligodendrocytes and their precursors, while combinations of factors from different classes promote survival additively. Long-term survival of oligodendrocytes in vitro requires at least one factor from each class, suggesting that multiple signals may be required for long-term oligodendrocyte survival in vivo. We also show that CNTF promotes oligodendrocyte survival in vivo, that platelet-derived growth factor (PDGF) can promote the survival of oligodendrocyte precursors in vitro by acting on a novel, very high affinity PDGF receptor, and that, in addition to its effect on survival, NT-3 is a potent mitogen for oligodendrocyte precursor cells.}, language = {en} } @phdthesis{Dankworth2013, author = {Dankworth, Beatrice}, title = {Charakterisierung der dynamischen Interaktion des Guanylyl Cyclase-A (GC-A)-Rezeptors mit den Transient Receptor Potential Canonical Type 3 und Type 6 (TRPC3/C6)-Kan{\"a}len und Generierung von β-Zell-spezifischen GC-A-knock-out-M{\"a}usen sowie die Analyse der Bedeutung von ANP f{\"u}r die Insulin-Hom{\"o}ostase unter pathophysiologischen Bedingungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Das atriale natriuretische Peptid (ANP) beeinflusst den arteriellen Blutdruck und das intravasale Volumen durch Stimulation der intrazellul{\"a}ren Produktion von cGMP {\"u}ber den membranst{\"a}ndigen Guanylyl Cyclase-A (GC-A)-Rezeptor. ANP stimuliert außerdem die Angiogenese und ist am Wachstum der Kardio-myozyten beteiligt. Im ersten Teil der vorliegenden Arbeit wurde die dynamische Interaktion zwischen den rezeptoraktivierten Kationenkan{\"a}len Transient Receptor Potential Canonical Type 3 und Type 6 (TRPC3/C6) und dem GC-A-Rezeptor untersucht. Erst k{\"u}rzlich konnte gezeigt werden, dass ANP {\"u}ber GC-A den TRPC-vermittelten Ca2+-Einstrom in Kardiomyozyten auf cGMP-unabh{\"a}ngige Weise stimuliert. Um eine m{\"o}gliche direkte Interaktion von TRPC3/C6 und GC-A zu zeigen, wurde TRPC3 oder C6 mit Flag-GC-A in HEK293-Zellen koexprimiert. Die Membranfraktion der Zellen wurde nach Immunpr{\"a}zipitation mit einem anti-Flag-Antik{\"o}rper im Western Blot untersucht. Es konnte gezeigt werden, dass TRPC3/C6 unabh{\"a}ngig von ANP mit GC-A ko-immunpr{\"a}zipitieren. Die Interaktion erfolgte auch mit einem modifizierten GC-A-Rezeptor, dem die Cyclase-Dom{\"a}ne fehlt. Um die Interaktion in Kardiomyozyten zu untersuchen, wurde ein transgenes Mausmodell mit einer {\"U}berproduktion von HA-GC-A in Kardiomyozyten verwendet. Auch bei diesem Modell konnte mittels anti-HA- Antik{\"o}rper die Koimmunpr{\"a}zipitation von GC-A und TRPC3/C6 nachgewiesen werden. Schließlich wurden FRET-basierte Untersuchungen durchgef{\"u}hrt, um die lokale N{\"a}he von GC-A und TRPC3 zu beweisen und eine m{\"o}gliche ANP-induzierte Konformations{\"a}nderung zu untersuchen. Die Koexpression von GC-A-CFP und TRPC3-YFP in HEK293 Zellen f{\"u}hrte zu einem FRET-Signal, welches durch ANP konzentrationsabh{\"a}ngig (1-100 nM) gesenkt wurde. Die Gabe des membranpermeablen cGMP-Analagons 8-Br-cGMP f{\"u}hrte dagegen zu keiner Ver{\"a}nderung des FRET-Signals. Die Ergebnisse best{\"a}tigen das Vorhandensein eines stabilen Proteinkomplexes von GC-A und TRPC3, der f{\"u}r den neuen cGMP-unabh{\"a}ngigen Signalweg von GC-A ausschlaggebend ist. Der zweite Teil der vorliegenden Arbeit beschreibt die Rolle von ANP/GC-A f{\"u}r die Insulinaussch{\"u}ttung der pankreatischen β-Zellen. Es ist bereits bekannt, dass GC-A in den β-Zellen exprimiert wird und dass ANP an isolierten Langerhans'schen Inseln das β-Zell-Wachstum und die Insulinsekretion moduliert. Um langfristig die Bedeutung von ANP f{\"u}r die systemische Glukose-Hom{\"o}ostase zu ergr{\"u}nden, wurde ein Mausmodell mit einer β-Zell-spezifischen GC-A-Deletion generiert. Der Nachweis des konditionellen GC-A knock out (KO) erfolgte mittels genomischer PCR und Immunhistochemie. Eine Detektion von GC-A in den Langerhans'schen Inseln auf Proteinebene war leider nicht m{\"o}glich. Aber es konnte gezeigt werden, dass der β-Zell-spezifische KO zu keiner Expressions{\"a}nderung von GC-A in anderen Geweben f{\"u}hrte. Auch der Blutdruck und das Herzgewicht der KO M{\"a}use blieb unauff{\"a}llig. Zur Untersuchung der Bedeutung von ANP f{\"u}r die Insulinaussch{\"u}ttung unter pathologischen Bedingungen wurden KO- und Kontrolltiere f{\"u}r 12 Wochen einer fettreichen Ern{\"a}hrung (60\% Fett) ausgesetzt um einen Pr{\"a}diabetes auszul{\"o}sen. Zu verschiedenen Zeitpunkten der Studie wurden orale Glukose-Toleranz-Tests (oGTT), Blutdruckmessungen und Gewichtsbestimmungen durchgef{\"u}hrt. Bereits vor der Studie wurde beobachtet, dass der N{\"u}chternglukosewert in den weiblichen KO-M{\"a}usen leicht erh{\"o}ht ist. Daher wurden die oGTT's in der Studie geschlechtsspezifisch ausgewertet. Am Ende der Studie zeigten alle M{\"a}use eine vergleichbare insuffiziente Blutzuckerregulierung. Der Blutdruck war sowohl in KO- als auch in Kontrolltieren um ca. 60\% erh{\"o}ht. Einigen Tieren wurde das Pankreas entnommen und f{\"u}r immunhistologische Zwecke pr{\"a}pariert. Die morphometrische Auswertung der Pankreas-Schnitte ergab eine signifikant vergr{\"o}ßerte durchschnittliche Inselfl{\"a}che und eine erh{\"o}hte durchschnittliche β-Zellfl{\"a}che der KO-Tiere im Vergleich zu den Kontrollen. Die β-Zellen der KO-Tieren waren im Vergleich zu den Kontrollen hypertroph. Die Studie zeigt also, dass die Deletion von GC-A in den β-Zellen unter pathologischen Bedingungen zu einer Hypertrophie der β-Zellen f{\"u}hrt und zu einem geringeren Schutz gegen die Ausbildung eines Pr{\"a}diabetes beitr{\"a}gt. Eine m{\"o}gliche verst{\"a}rkte periphere Insulinresistenz in den KO-Tieren ist auch nicht auszuschließen. Weitere Studien an dem neuen Mausmodell k{\"o}nnten die Bedeutung des ANP/GC-A-Systems f{\"u}r die Insulinaussch{\"u}ttung n{\"a}her ergr{\"u}nden und dadurch eventuell neue Therapieans{\"a}tze f{\"u}r Diabetes mellitus Typ 2 bringen.}, subject = {Atriales natriuretisches Hormon}, language = {de} } @phdthesis{Herbst2008, author = {Herbst, Andreas Sebastian}, title = {Untersuchungen zu in vitro modifizierten humanen Blutmonozyten : Immunhistochemisch-morphologische Charakterisierung und funktioneller Nachweis von Insulin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Insulin-produzierende Zellen als Ersatz f{\"u}r die beim Diabetes mellitus Typ 1 zerst{\"o}rten Betazellen stellen einen hochattraktiven Forschungsansatz dar. Ziel dieser Arbeit war, Insulin-positive Zellen aus in vitro modifizierten Blutmonozyten zu gewinnen. Blutmonozyten sind nicht nur, wie bereits seit l{\"a}ngerem bekannt, in der Lage, sich in Makrophagen und dendritischen Zellen zu differenzieren, sondern auch in eine Vielzahl nicht-phagozytierender Zellen, wie z.B. Insulin-produzierender Zellen. F{\"u}r die optimale Zelltherapie ist zu fordern, dass die gew{\"u}nschten Zellen in vivo nicht nur ihre Funktion beibehalten, sondern dass von diesen Zellen auch kein immunologisches Risiko f{\"u}r den Patienten ausgeht. Eine dauerhafte Immunsuppression, wie sie f{\"u}r die Vollorgantransplantation notwendig ist, ist f{\"u}r Zelltransplantate nicht angebracht. Hier besteht {\"U}bereinkunft, dass Immunsuppressiva, wenn {\"u}berhaupt, nur kurzfristig einzusetzen sind. Blutmonozyten lassen sich einfach gewinnen und st{\"u}nden somit als autologer Zellersatz f{\"u}r eine m{\"o}gliche Zelltherapie zur Verf{\"u}gung. Ein wesentlicher Aspekt dieser Arbeit war, die in vitro Differenzierung von Blutmonozyten zu charakterisieren. Dabei sollte die Expression von Insulin, Gluka¬gon und dem Glukosetransporter Glut-2 nachgewiesen werden. Auch morpho¬logische Ver{\"a}nderungen w{\"a}hrend der Kultur sollten beobachtet werden. Die kultivierten Monozyten entwickelten sich mit zunehmender Kulturdauer eindeutig zu Makrophagen. Dabei waren zwei verschiedene Zellmorphologien zu unterscheiden: Der erste Zelltyp (Typ 1) war oval mit Ausl{\"a}ufern. Der zweite Zelltyp (Typ 2) war sehr groß, teilweise mit einem Durchmesser von {\"u}ber 500 \&\#956;m, h{\"a}ufig von ovaler Form und polynukle{\"a}r. Dieser Zelltyp wies zudem h{\"a}ufig einen breiten, um das Kerngebiet gruppierten Saum auf. Mit zunehmender Kulturdauer dominierte dieser Zelltyp die Kultur. Der Großteil der Typ 1-Zellen blieb CD14 positiv. Gab es CD14-negative Zellen in der Kultur, so geh{\"o}rten sie mit großer Wahrscheinlichkeit zu den Typ 2-Zellen. Nur in den in vitro modifizierten, nicht aber in den frisch isolierten Monozyten waren Insulin, C-Peptid, Glukagon und GLUT-2 immunhistochemisch nachzu¬weisen. Mit zunehmender Kulturdauer dominierten stark adh{\"a}rente Makrophagen die Kultur. Das aus ca. 5x106 Monozyten isolierte Insulin senkte den Blutzuckerspiegel diabetischer M{\"a}use innerhalb einer Stunde nach Injektion um 66,1±12,8 Prozent (n=5). Zum Vergleich: 170 pg Humaninsulin senkten den Blutzuckerspiegel um 84,2±8,4 Prozent (n=4). Insulin-negative Monozyten beeinflussten nicht den Blutzuckerspiegel diabeticher M{\"a}use. Zudem lassen erste elektronenmikroskopische Aufnahmen von in vitro modifizierten Monozyten Insulin-haltige Vesikel erkennen. Zum jetzigen Zeitpunkt ist gesichert, dass in vitro modifizierte Monozyten {\"u}ber biologisch aktives Insulin verf{\"u}gen, das den Blutzuckerspiegel diabetischer Tiere senkt. Der Nachweis von C-Peptid deutet zudem darauf hin, dass es sich hierbei um de novo Insulin handelt. Dies bedeutet, dass das Insulin-Gen in den in vitro modifizierten Monozyten aktiv ist und sie Insulin mRNA exprimieren, die anschließend in Insulin translatiert wird. Der elektronenmikroskopische Nachweis Insulin-haltiger Granula deutet außerdem darauf hin, dass diese Zellen Insulin speichern k{\"o}nnen. Inwieweit sie jedoch auch zur Glukose-ab¬h{\"a}ngigen Insulin-Aussch{\"u}ttung in der Lage sind, ist in weiteren Experimenten zu {\"u}berpr{\"u}fen.}, subject = {Insulin}, language = {de} } @phdthesis{Hohloch2008, author = {Hohloch, Silke}, title = {Etablierung eines hochsensitiven liposomalen Transfektionssystems zur Untersuchung der Aktivit{\"a}t des humanen Insulingenpromotors in ß-Zelllinien und prim{\"a}ren ß-Zellen des endokrinen Pankreas des Menschen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36407}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die Insulinbiosynthese in ß-Zellen des endokrinen Pankreas wird auf transkriptioneller Ebene durch die Aktivit{\"a}t des Insulingenpromotors reguliert. Die detaillierte Analyse der Aktivit{\"a}t des humanen Insulingenpromotors erfolgte bisher nur in speziesdifferenten ß-Zelllinien, da glukosesensitive ß-Zelllinien aus dem Pankreas des Menschen nicht verf{\"u}gbar sind. Es ist jedoch bekannt, dass signifikante Unterschiede in der transkriptionellen Regulation der Genexpression in unterschiedlichen Spezies existieren. Deshalb wurde im Rahmen dieser Arbeit eine Methode entwickelt, mit deren Hilfe die spezifische Untersuchung der Regulation des humanen Insulingenpromotors hochsensitiv in prim{\"a}ren humanen ß-Zellen des endokrinen Pankreas des Menschen m{\"o}glich ist. Dazu wurde ein Vektor kloniert, der das SEAP (secreted alkaline phosphatase)-Reportergen unter der Kontrolle des -336 bp langen humanen Insulingenpromotors enth{\"a}lt. Im Laufe verschiedener Transfektionsexperimente mit dem Vektor p-336hInsP-SEAP, pSEAP2-Control (Positivkontrolle) und pSEAP2-Basic (Negativkontrolle) sowohl in INS-1-ß-Zellen, in beta-TC3-Zellen als auch in prim{\"a}ren humanen ß-Zellen, zeigten sich in den luminometrisch bestimmten SEAP-Aktivit{\"a}ten, die als Maß f{\"u}r die Aktivit{\"a}t des humanen Insulingenpromotors dienen, deutliche Unterschiede zwischen den transkriptionellen Aktivit{\"a}ten der einzelnen Vektoren. Dieses System eignet sich also ausgezeichnet f{\"u}r die hochsensitive Analyse der Insulingenpromotoraktivi{\"a}t. Zur detaillierteren Analyse wurden 5'-Deletionskonstrukte des Vektors p-336hInsP-SEAP konstruiert und damit INS-1- und beta-TC3-Zellen transient transfiziert. In beiden Zelllinien wurden Experimente bei unterschiedlichen Glukosekonzentrationen durchgef{\"u}hrt, um daraus R{\"u}ckschl{\"u}sse auf die Glukoseresponsivit{\"a}t des humanen Insulingenpromotors ziehen zu k{\"o}nnen. Dabei zeigte der humane Insulingenpromotor die aus Versuchen mit dem RattenInsulingenpromotor 1 erwartete Glukoseresponsivit{\"a}t. Allerdings ließ sich keine Abnahme der transkriptionellen Aktivit{\"a}t des Promotors bei Abnahme der L{\"a}nge der Konstrukte beobachten. Unter Verwendung von Effectene® als Transfektionsreagenz eignet sich das SEAP-System zur Analyse der Aktivit{\"a}t des humanen Insulingenpromotors in prim{\"a}ren insulinproduzierenden Zellen aus dem menschlichen Pankreas.}, subject = {Insulin}, language = {de} } @phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @article{KlementKaemmerer2011, author = {Klement, Rainer and K{\"a}mmerer, Ulrike}, title = {Is there a role for carbohydrate restriction in the treatment and prevention of cancer?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69178}, year = {2011}, abstract = {Over the last years, evidence has accumulated suggesting that by systematically reducing the amount of dietary carbohydrates (CHOs) one could suppress, or at least delay, the emergence of cancer, and that proliferation of already existing tumor cells could be slowed down. This hypothesis is supported by the association between modern chronic diseases like the metabolic syndrome and the risk of developing or dying from cancer. CHOs or glucose, to which more complex carbohydrates are ultimately digested, can have direct and indirect effects on tumor cell proliferation: first, contrary to normal cells, most malignant cells depend on steady glucose availability in the blood for their energy and biomass generating demands and are not able to metabolize significant amounts of fatty acids or ketone bodies due to mitochondrial dysfunction. Second, high insulin and insulin-like growth factor (IGF)-1 levels resulting from chronic ingestion of CHO-rich Western diet meals, can directly promote tumor cell proliferation via the insulin/IGF1 signaling pathway. Third, ketone bodies that are elevated when insulin and blood glucose levels are low, have been found to negatively affect proliferation of different malignant cells in vitro or not to be usable by tumor cells for metabolic demands, and a multitude of mouse models have shown antitumorigenic properties of very low CHO ketogenic diets. In addition, many cancer patients exhibit an altered glucose metabolism characterized by insulin resistance and may profit from an increased protein and fat intake. In this review, we address the possible beneficial effects of low CHO diets on cancer prevention and treatment. Emphasis will be placed on the role of insulin and IGF1 signaling in tumorigenesis as well as altered dietary needs of cancer patients.}, subject = {Medizin}, language = {en} } @phdthesis{Konrad2007, author = {Konrad, Christian}, title = {Molecular analysis of insulin signaling mechanisms in Echinococcus multilocularis and their role in the host-parasite interaction in the alveolar echinococcosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The insulin receptor ortholog EmIR of the fox-tapeworm Echinococcus multilocularis displays significant structural homology to the human insulin receptor (HIR) and has been suggested to be involved in insulin sensing mechanisms of the parasite's metacestode larval stage. In the present work, the effects of host insulin on Echinococcus metacestode vesicles and the proposed interaction between EmIR and mammalian insulin have been studied using biochemical and cell-biological approaches. Human insulin, exogenously added to in vitro cultivated parasite larvae, (i) significantly stimulated parasite survival and growth, (ii) induced DNA de novo synthesis in Echinococcus, (iii) affected overall protein phosphorylation in the parasite, and (iv) specifically induced the phosphorylation of the parasite's Erk-like MAP kinase orthologue EmMPK1. These results clearly indicated that Echinococcus metacestode vesicles are able to sense exogenous host insulin which induces a mitogenic response. To investigate whether EmIR mediates these effects, anti-EmIR antibodies were produced and utilized in biochemical assays and immunohistochemical analyses. EmIR was shown to be expressed in the germinal layer of the parasite both on the surface of glycogen storing cells and undifferentiated germinal cells. Upon addition of exogenous insulin to metacestode vesicles, the phosphorylation of EmIR was significantly induced, an effect which was suppressed in the presence of specific inhibitors of insulin receptor-like tyrosine kinases. Furthermore, upon expression of EmIR/HIR receptor chimera containing the extracellular ligand binding domain of EmIR in HEK 293 cells, a specific autophosphorylation of the chimera could be induced through the addition of exogenous insulin. These results indicated the capability of EmIR to sense and to transmit host insulin signals to the Echinococcus signaling machinery. The importance of insulin signaling mechanisms for parasite survival and growth were underscored by in vitro cultivation experiments in which the addition of an inhibitor of insulin receptor tyrosine kinases led to vesicle degradation and death. Based on the above outlined molecular data on the interaction between EmIR and mammalian insulin, the parasite's insulin receptor orthologue most probably mediates the insulin effects on parasite growth and is, therefore, a potential candidate factor for host-parasite communication via evolutionary conserved pathways. In a final set of experiments, signaling mechanisms that act downstream of EmIR have been analyzed. These studies revealed significant differences between insulin signaling in Echinococcus and the related cestode parasite Taenia solium. These differences could be associated with differences in the organo-tropism of both species.}, subject = {Fuchsbandwurm}, language = {en} } @phdthesis{Lazariotou2008, author = {Lazariotou, Maria}, title = {Gentechnologische Reduktion der Expression des Autoantigens Glutamatdecarboxylase (GAD) in insulinproduzierenden Zellen des endokrinen Pankreas}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30878}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Im Rahmen der vorliegenden Arbeit sollte gepr{\"u}ft werden ob durch Reduktion der Glutamatdecarboxylase (GAD) Expression eine Reduktion des autoimmunogenen Potenzials in insulinproduzierenden Beta-Zellen des endokrinen Pankreas erreicht werden kann. Aus der Literatur ist bekannt, dass GAD als Autoantigen eine zentrale Stellung bei der Induktion der T-Zell vermittelten Insulitis einnimmt. Der Prozess, welcher zur Beta-Zell-Apoptose des Typ 1 Diabetes f{\"u}hrt, ist ein bislang wenig verstandener komplexer Vorgang. Ein besseres Verst{\"a}ndnis dieses Prozesses k{\"o}nnte zur Pr{\"a}vention der Beta-Zell-Zerst{\"o}rung in der fr{\"u}hen Phase des Typ 1 Diabetes beitragen. In den f{\"u}r die Untersuchungen verwendeten INS-1 Zellen werden die beiden Isoformen der GAD exprimiert. Durch einen antisense Ansatz sollte in INS-1 Zellen die GAD Expression beider Isoformen supprimiert werden. In dieser Arbeit wurden zwei Methoden zur gezielten Suppression der Expression des Autoantigens GAD65 etabliert. Es konnte ein antisense Klon identifiziert werden, bei dem die endogene GAD65 mRNA fast nicht mehr detektierbar war. Auf Protein Ebene, im Westernblot konnte dieses Ergebnis jedoch nicht best{\"a}tigt werden. Im zweiten Teil der Arbeit wurde die Funktion der INS-1 Zellen mit supprimierter GAD65 Expression charakterisiert. Dieser Punkt beinhaltet die Analyse der Expression von Genen, welche die Beta-Zell-Funktion definieren, die Glukose-abh{\"a}ngige Insulinsekretion sowie die Regulation der Zytokin-induzierten Apoptose. Dabei zeigte sich aus Daten der RT-PCR, dass die mRNAs von anderen Beta-Zell-spezifischen Genen wie GLUT2, Glukokinase, Proinsulin, IDX1 und Nkx6.1 in unver{\"a}nderter Menge nachweisbar sind. Also bleibt die Funktion der INS-1 Beta-Zellen erhalten, da selbst durch forcierte Reduktion der Expression des Autoantigens GAD65 die Glukose-induzierte Insulinsekretionskapazit{\"a}t im Wesentlichen nicht beeintr{\"a}chtigt wird. In vitro Untersuchungen zeigten eine unver{\"a}nderte Sensitivit{\"a}t der Zytokin-induzierten Apoptose nach GAD65 Suppression in INS-1 Zellen. Die zuvor genannten Resultate und die Tatsache, dass die GAD wohl eines der wichtigsten Autoantigene im Rahmen der Immunpathogenese des Typ 1 Diabetes ist, stellen die Grundlage f{\"u}r die Generierung GAD-supprimierter transplantierbarer Beta-Zellen mit guter Transplantatfunktion dar. Im Hinblick auf eine m{\"o}gliche therapeutische Anwendung bei der Behandlung dieser humanen Autoimmunerkrankung demonstrieren die vorliegenden Daten, dass im Rahmen einer Inselzelltransplantation die Verwendung von GAD-supprimierten Beta-Zellen bei der Transplantation in das endokrine Pankreas des Menschen zu einer Verminderung von Autoimmunreaktionen f{\"u}hren k{\"o}nnte.}, subject = {Glutamat-Decarboxylase}, language = {de} } @phdthesis{Muehlemann2018, author = {M{\"u}hlemann, Markus}, title = {Intestinal stem cells and the Na\(^+\)-D-Glucose Transporter SGLT1: potential targets regarding future therapeutic strategies for diabetes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169266}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The pancreas and the small intestine are pivotal organs acting in close synergism to regulate glucose metabolism. After absorption and processing of dietary glucose within the small intestine, insulin and glucagon are released from pancreatic islet cells to maintain blood glucose homeostasis. Malfunctions affecting either individual, organ-specific functions or the sophisticated interplay of both organs can result in massive complications and pathologic conditions. One of the most serious metabolic diseases of our society is diabetes mellitus (DM) that is hallmarked by a disturbance of blood glucose homeostasis. Type 1 (T1DM) and type 2 (T2DM) are the main forms of the disease and both are characterized by chronic hyperglycemia, a condition that evokes severe comorbidities in the long-term. In the past, several standard treatment options allowed a more or less adequate therapy for diabetic patients. Albeit there is much effort to develop new therapeutic interventions to treat diabetic patients in a more efficient way, no cure is available so far. In view of the urgent need for alternative treatment options, a more systemic look on whole organ systems, their biological relation and complex interplay is needed when developing new therapeutic strategies for DM. T1DM is hallmarked by an autoimmune-mediated destruction of the pancreatic β-cell mass resulting in a complete lack of insulin that is in most patients restored by applying a life-long recombinant insulin therapy. Therefore, novel regenerative medicine-based concepts focus on the derivation of bioartificial β-like cells from diverse stem cell sources in vitro that survive and sustain to secrete insulin after implantation in vivo. In this context, the first part of this thesis analyzed multipotent intestinal stem cells (ISCs) as alternative cell source to derive bioartificial, pancreatic β-like cells in vitro. From a translational perspective, intestinal stem cells pose a particularly attractive cell source since intestinal donor tissues could be obtained via minimal invasive endoscopy in an autologous way. Furthermore, intestinal and pancreatic cells both derive from the same developmental origin, the endodermal gut tube, favoring the differentiation process towards functional β-like cells. In this study, pancreas-specific differentiation of ISCs was induced by the ectopic expression of the pancreatic transcription factor 1 alpha (Ptf1a), a pioneer transcriptional regulator of pancreatic fate. Furthermore, pancreatic lineage-specific culture media were applied to support the differentiation process. In general, ISCs grow in vitro in a 3D Matrigel®-based environment. Therefore, a 2D culture platform for ISCs was established to allow delivery and ectopic expression of Ptf1a with high efficiency. Next, several molecular tools were applied and compared with each other to identify the most suitable technology for Ptf1a delivery and expression within ISCs as well as their survival under the new established 2D conditions. Success of differentiation was investigated by monitoring changes in cellular morphology and induction of pancreatic differentiation-specific gene expression profiles. In summary, the data of this project part suggest that Ptf1a harbors the potential to induce pancreatic differentiation of ISCs when applying an adequate differentiation media. However, gene expression analysis indicated rather an acinar lineage-determination than a pancreatic β-cell-like specification. Nevertheless, this study proved ISCs not only as interesting stem cell source for the generation of pancreatic cell types with a potential use in the treatment of T1DM but alsoPtf1a as pioneer factor for pancreatic differentiation of ISCs in general. Compared to T1DM, T2DM patients suffer from hyperglycemia due to insulin resistance. In T2DM management, the maintenance of blood glucose homeostasis has highest priority and can be achieved by drugs affecting the stabilization of blood glucose levels. Recent therapeutic concepts are aiming at the inhibition of the intestinal glucose transporter Na+-D-Glucose cotransporter 1 (SGLT1). Pharmacological inhibition of SGLT1 results in reduced postprandial blood glucose levels combined with a sustained and increased Glucagon-like peptide 1 (GLP-1) secretion. So far, systemic side effects of this medication have not been addressed in detail. Of note, besides intestinal localization, SGLT1 is also expressed in various other tissues including the pancreas. In context of having a closer look also on the interplay of organs when developing new therapeutic approaches for DM, the second part of this thesis addressed the effects on pancreatic islet integrity after loss of SGLT1. The analyses comprised the investigation of pancreatic islet size, cytomorphology and function by the use of a global SGLT1 knockout (SGLT1-/-) mouse model. As SGLT1-/- mice develop the glucose-galactose malabsorption syndrome when fed a standard laboratory chow, these animals derived a glucose-deficient, fat-enriched (GDFE) diet. Wildtype mice on either standard chow (WTSC) or GDFE (WTDC) allowed the discrimination between diet- and knockout-dependent effects. Notably, GDFE fed mice showed decreased expression and function of intestinal SGLT1, while pancreatic SGLT1 mRNA levels were unaffected. Further, the findings revealed increased isled sizes, reduced proliferation- and apoptosis rates as well as an increased α-cell and reduced β-cell proportion accompanied by a disturbed cytomorphology in islets when SGLT1 function is lost or impaired. In addition, pancreatic islets were dysfunctional in terms of insulin- and glucagon-secretion. Moreover, the release of intestinal GLP-1, an incretin hormone that stimulates insulin-secretion in the islet, was abnormal after glucose stimulatory conditions. In summary, these data show that intestinal SGLT1 expression and function is nutrient dependent. The data obtained from the islet studies revealed an additional and new role of SGLT1 for maintaining pancreatic islet integrity in the context of structural, cytomorphological and functional aspects. With special emphasis on SGLT1 inhibition in diabetic patients, the data of this project indicate an urgent need for analyzing systemic side effects in other relevant organs to prove pharmacological SGLT1 inhibition as beneficial and safe. Altogether, the findings of both project parts of this thesis demonstrate that focusing on the molecular and cellular relationship and interplay of the small intestine and the pancreas could be of high importance in context of developing new therapeutic strategies for future applications in DM patients.}, subject = {Stammzelle}, language = {en} } @phdthesis{Schmidt2009, author = {Schmidt, Kay-Renke Meinard Werner}, title = {Charakterisierung in vitro modifizierter humaner Blutmonozyten: {\"U}berpr{\"u}fung von Kulturbedingungen und funktioneller Nachweis von Insulin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38342}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Das Konzept, Insulin-produzierende Zellen als Ersatz f{\"u}r zerst{\"o}rte Beta-Zellen beim Diabetes mellitus Typ I einzusetzen, ist auch weiterhin hoch attraktiv. Eine Alternative zur Herstellung Insulin-produzierender Zellen aus embryonalen oder adulten Stammzellen k{\"o}nnten in vitro modifizierte, Insulin-positive Monozyten sein. Seit l{\"a}ngerem ist bekannt, dass sich Monozyten in Makrophagen und Dendritische Zellen differenzieren. Weniger bekannt ist, dass sich Monozyten auch in eine Vielzahl nicht-phagozytierender Zellen differenzieren k{\"o}nnen. Hierzu geh{\"o}ren auch Insulin-positive Zellen. F{\"u}r die optimale Zelltherapie ist zu fordern, dass die Zellen nicht nur ihre Funktion im Patienten beibehalten, sondern dass von ihnen auch kein immu-nologisches Risiko ausgeht. Blutmonozyten lassen sich einfach gewinnen und st{\"u}nden somit als autologer Zellersatz f{\"u}r eine m{\"o}gliche Zelltherapie zur Verf{\"u}gung. Monozyten von zw{\"o}lf gesunden Spendern im Alter zwischen 23 und 57 Jahren wurden untersucht. Die Monozyten wurden durch Adh{\"a}renz angereichert und f{\"u}r sechs Tage in X-Medium mit den Cytokinen M-CSF und IL-3 und f{\"u}r weitere vier Tage in Y-Medium mit den Cytokinen HGF und EGF inkubiert. In dieser Arbeit wurde gezeigt, dass sich Insulin-positive Monozyten routine-m{\"a}ßig aus peripheren Blutmonozyten gesunder Spender mittels Leukapharese gewinnen lassen. Frisch isolierte periphere Blutmonozyten waren vor ihrer Kultivierung negativ f{\"u}r Insulin und C-Peptid. Nach zehnt{\"a}giger Kultur wurden 77±16\% Insulin-positive und 49±30\% C-Peptid-positive Monozyten nachgewiesen. Weiterhin exprimierten 60±4\% der Zellen den Monozytenmarker CD14. Auch wurde gezeigt, dass die Kulturbedingungen die Ausbeute an Insulin-positiven Monozyten beeinflussen. Aus jeweils drei Millionen Insulin-positiven Monozyten wurde das Insulin isoliert und diabetischen M{\"a}usen mit einem Blutzuckerspiegel von 300-600 mg/dL subkutan injiziert (n=8). Daraufhin sank der Blutzuckerspiegel um 51\%±12\% innerhalb einer Stunde. Auch Insulin-positive Monozyten, die diabetischen M{\"a}usen subkutan injiziert wurden, waren in der Lage, den Blutzuckerspiegel bis zum Zeitpunkt Ihrer Abstoßung aktiv zu regulieren (n=4). In einem Pilotversuch wurde zudem gezeigt, dass transplantierte Insulin-positive Monozyten langfristig (> 100 Tage) den Blutzuckerspiegel einer diabetischen immuninkompetenten Maus regulieren. In dieser Arbeit wurde somit erfolgreich gezeigt, dass in vitro modifizierte Monozyten biologisch aktives Insulin enthalten.}, subject = {Monozyten}, language = {de} } @article{TauscherNakagawaVoelkeretal.2018, author = {Tauscher, Sabine and Nakagawa, Hitoshi and V{\"o}lker, Katharina and Werner, Franziska and Krebes, Lisa and Potapenko, Tamara and Doose, S{\"o}ren and Birkenfeld, Andreas L. and Baba, Hideo A. and Kuhn, Michaela}, title = {β Cell-specific deletion of guanylyl cyclase A, the receptor for atrial natriuretic peptide, accelerates obesity-induced glucose intolerance in mice}, series = {Cardiovascular Diabetology}, volume = {17}, journal = {Cardiovascular Diabetology}, number = {103}, doi = {10.1186/s12933-018-0747-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176322}, year = {2018}, abstract = {Background: The cardiac hormones atrial (ANP) and B-type natriuretic peptides (BNP) moderate arterial blood pressure and improve energy metabolism as well as insulin sensitivity via their shared cGMP-producing guanylyl cyclase-A (GC-A) receptor. Obesity is associated with impaired NP/GC-A/cGMP signaling, which possibly contributes to the development of type 2 diabetes and its cardiometabolic complications. In vitro, synthetic ANP, via GC-A, stimulates glucose-dependent insulin release from cultured pancreatic islets and β-cell proliferation. However, the relevance for systemic glucose homeostasis in vivo is not known. To dissect whether the endogenous cardiac hormones modulate the secretory function and/or proliferation of β-cells under (patho)physiological conditions in vivo, here we generated a novel genetic mouse model with selective disruption of the GC-A receptor in β-cells. Methods: Mice with a floxed GC-A gene were bred to Rip-CreTG mice, thereby deleting GC-A selectively in β-cells (β GC-A KO). Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion were monitored in normal diet (ND)- and high-fat diet (HFD)-fed mice. β-cell size and number were measured by immunofluorescence-based islet morphometry. Results: In vitro, the insulinotropic and proliferative actions of ANP were abolished in islets isolated from β GC-A KO mice. Concordantly, in vivo, infusion of BNP mildly enhanced baseline plasma insulin levels and glucose-induced insulin secretion in control mice. This effect of exogenous BNP was abolished in β GC-A KO mice, corroborating the efficient inactivation of the GC-A receptor in β-cells. Despite this under physiological, ND conditions, fasted and fed insulin levels, glucose-induced insulin secretion, glucose tolerance and β-cell morphology were similar in β GC-A KO mice and control littermates. However, HFD-fed β GC-A KO animals had accelerated glucose intolerance and diminished adaptative β-cell proliferation. Conclusions: Our studies of β GC-A KO mice demonstrate that the cardiac hormones ANP and BNP do not modulate β-cell's growth and secretory functions under physiological, normal dietary conditions. However, endogenous NP/GC-A signaling improves the initial adaptative response of β-cells to HFD-induced obesity. Impaired β-cell NP/GC-A signaling in obese individuals might contribute to the development of type 2 diabetes.}, language = {en} } @article{VieraElMerahbiNieswandtetal.2016, author = {Viera, Jonathan Trujillo and El-Merahbi, Rabih and Nieswandt, Bernhard and Stegner, David and Sumara, Grzegorz}, title = {Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179729}, year = {2016}, abstract = {Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.}, language = {en} }