@phdthesis{Huebner2010, author = {H{\"u}bner, Dominique}, title = {Vibronic and electronic excitations of large organic molecules in gas and condensed phase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66043}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In the frame of this thesis vibronic and electronic states of organic molecules have been examined. A central question is the interaction within and between the molecules in thin films and at metal-organic interfaces. The main experimental tools were high resolution electron energy loss spectroscopy (HREELS) and high resolution near edge X-ray absortion fine structure (NEXFAS). The electronic and vibronic structure of thin NTCDA films was examined with low energy electrons as probe, i.e. HREELS. The spectra of the electronic excited molecular orbitals of submonolayer NTCDA on a Ag(111) shows a partially filled orbital. The interaction between this orbital and the total symetric molecular vibrations leads to the typical Fano peak profiles which are seen in the vibrational spectra. The sub-monolayer superstructure can be driven to a phase transition into an disordered phase upon cooling, which is also seen in the electronic and vibronic excitation spectra. Multilayers show flat lying or upright standing molecules as a function of the preparation conditions. The upright standing molecules show an island growth mode, where the islands are well ordered and exhibit a structure in diffraction experiments which can be attributed to the molecular crystal structure. In order to examine the order in more detail various thin films were examined using SPALEED as function of film thickness and preparation parameters. In case of a low temperature substrate no long range order leading to a diffraction pattern was found. In contrast growth on room temperature substrates leads to island growth of films in a structure of the molecular crystal, where two preferred orientations of the islands relative to the substrate were found. In case of thick films the reference to the substrate gets lost and the molecular crystals grow with a defined crystal direction with respect to the surface but with an arbitrary azimuthal orientation leading to circles in the diffraction pattern. NTCDA monolayers on a Ag(111) surface using HREELS as a tool were examined. The electronic excitation spectra reveal a partially filled molecular orbital which is strongly shifted compared to the multilayer. The existence of this state is responsible for the activation of normally forbidden Ag modes in the vibrational spectra. Due to the electron phonon coupling these modes exhibit a Fano like peak shape. Cooling a monolayer leads to a phase transition with strong changes in the spectroscopic features both in electronic and vibronic excitations. In case of the molecule ANQ the intramolecular interaction was examined. In the oxygen NEXAFS spectra a vibronic fine structure is found, which leads to the conclusion that asymmetric potentials are involved. It is an interesting question if the fundamental vibration is has C-H or C=O character. In order to address this question spectra of condensed and gas phase ANQ were compared to an ANQ derivate (ANQ- Br\$_2\$Cl\$_2\$), with the conclusion that the coupling is most likely to a C=O mode. High resolution C1s spectra of hydrogenated and fully deuterated naphthalene both in gas and condensed phase have been presented. Depending on the final state orbital distinct differences have been found between gas and condensed phase. A energetic shift of resonances (Res. B, C, D) is interpreted as effect of \$\pi\$-\$\pi\$ interaction in the condensed phase. This is especially notable for resonance B which is undoubtly assigned to an excitation into a \$\pi^*\$ orbital. The results lead to an interpretation, that for organic molecular crystals more than pure van-derWaals interaction has to be taken into account. In summary it is found that the intramolecular interaction in NEXAFS spectra is preferentially coupled to one or a few vibronic progressions. Due to the delocalized electronic system maybe even states which are not spatially near the core excited atom can be involved. It could be shown that a condensation of the molecules in thin films leads to changes within the spectra. The influence the intermolecular interaction can be clearly seen in this finding, where additional hints are found that more than mere van-der-Waals binding has to be taken into account.}, subject = {Organisches Molek{\"u}l}, language = {en} } @phdthesis{Holch2009, author = {Holch, Florian}, title = {Investigation of Intermolecular Interaction in Organic Thin Films by means of NEXAFS Spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The present work reports on the electron-vibron coupling in large organic molecules and particularly on the intermolecular interaction in molecular condensates. The optical and electrical properties of these organic systems are in the focus of attention due to their crucial importance for the development of (hybrid) organic electronic devices. In particular, the charge transport mechanism and hence the interaction between condensed molecules is a matter of debate [1-4]. In order to shed light on this interaction, the spectroscopic signatures of isolated molecules in the gas phase and their condensed counterparts have been studied. The applied technique, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, is a local probe with high chemical selectivity, well suited for the investigation of the electronic structure of molecular valence levels [5]. In the experimental part, the experimental set-up developed in this work is described with special attention to the characteristic issues of gas phase measurements, energy calibration and the subsequent data evaluation. The high quality gas phase and solid state NEXAFS spectra are analysed with respect to energy positions, shape and intensity of the sharp pi*-resonances characteristic for these aromatic molecules. Where applicable, a detailed Franck-Condon (FC) analysis of the vibronic fine structure has been performed, yielding additional information on the changes that occur upon solid state formation. Together with former results on vibrational features in large organic molecules, this information has been used to investigate the correlation of vibrational energies in the ground and electronically excited state. We find a relatively good agreement with other empirical studies on vibronic structures in photoelectron spectroscopy (PES) spectra of small molecules [6]. The molecular compounds investigated are in general believed to interact via weak van-der-Waals forces only. The present results however reveal distinct differences between the spectra of the gas and solid phase that can not be explained within the context of a mere interaction by dispersive forces. In detail, differential red-shifts of 0.1 to 0.3eV of transitions assigned to the aromatic system have been observed in the C-K spectra of benzene-tetracarboxylic acid dianhydride (BTCDA), 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride (NTCDA), and 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) upon solid state formation. From BTCDA to PTCDA the shift increases, indicating an improving intermolecular interaction with molecular size or a closer molecular packing. In contrast, all transitions assigned to the anhydride carbon atom (C1) do not show any shift. For the O-K spectra, small changes in relative intensity have been observed for BTCDA and NTCDA. In case of PTCDA, a blue-shift of up to 0.2eV is evident for the OB 1sLEMO+1 transition. Theoretical models for the intermolecular interaction have been proposed in this work, based on a change of molecular geometry and interaction of adjacent molecules in the ground and excited state, respectively. While an interaction of adjacent molecular orbitals may explain the experimental findings for one particular molecule, this model falls short for a comprehensive explanation of all three dianhydrides. For an interaction in the excited state, the excitonic coupling with the neighbours attached at an angle, quantum chemical calculations yield no significant change in peak positions for NTCDA. Unfortunately, results for the stacked neighbours as well as the larger compound PTCDA are still lacking. For tris (8-quinolinol) aluminum (Alq3), the observed peak-shifts are restricted to just one unoccupied orbital, the LEMO+2, which is mainly localised at the phenoxide side of the quinolinol ligands. Although the shifts differ for the individual edges, the main interaction can therefore be assigned to this orbital. In summary, NEXAFS spectroscopy, if performed with great care in terms of experimental details and data analysis especially for the gas phase data, provides very detailed and highly interesting data on the changes of the electronic structure of organic molecules upon condensation. The present data can be applied as a reference for further experimental and (highly desired) theoretical investigations, which are needed for a comprehensive understanding of the complex interaction mechanisms between organic molecules.}, subject = {Organisches Molek{\"u}l}, language = {en} }