@phdthesis{Lutter2023, author = {Lutter, Fabian}, title = {Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in R{\"o}ntgen nano-CT}, doi = {10.25972/OPUS-31995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen M{\"o}glichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein R{\"o}ntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergr{\"o}ßerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie f{\"a}hig. Der Ausgangspunkt f{\"u}r die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich m{\"o}glich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Aufl{\"o}sung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erh{\"o}ht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Aufl{\"o}sung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabh{\"a}ngig und genauer bewegen, wodurch es m{\"o}glich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl f{\"u}r das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. F{\"u}r das R{\"o}ntgentarget werden Monte-Carlo Simulationen zur Brennfleckgr{\"o}ße, welche entscheidend f{\"u}r die erreichbare Aufl{\"o}sung ist, durchgef{\"u}hrt und mit Aufl{\"o}sungstests verglichen. Der R{\"o}ntgendetektor wird hinsichtlich seiner spektralen Aufl{\"o}sung {\"u}berpr{\"u}ft, welche haupts{\"a}chlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer h{\"o}her aufl{\"o}senden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchst{\"u}ck einer CPU, mit beiden Methoden unter der Voraussetzung einer {\"a}hnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal gr{\"o}ßeres Volumen analysiert werden, was jedoch eine geringere r{\"a}umliche Aufl{\"o}sung als die FIB Tomographie mit sich bringt. Da die spektrale Aufl{\"o}sung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast f{\"u}r leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Dar{\"u}ber hinaus ist es am XRM-II nanoCT m{\"o}glich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt.}, subject = {Computertomographie}, language = {de} } @phdthesis{Ebensperger2014, author = {Ebensperger, Thomas}, title = {Konzeption, Umsetzung und Evaluierung eines linsenlosen R{\"o}ntgenmikroskopes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117937}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Diese Arbeit befasst sich mit der Konzeption, Umsetzung und Charakterisierung eines R{\"o}nt- genmikroskops f{\"u}r harte R{\"o}ntgenstrahlung mit der M{\"o}glichkeit zur dreidimensionalen Bild- gebung. Der vorgestellte Aufbau basiert auf geometrischer Vergr{\"o}ßerung und verzichtet im Gegensatz zu anderen R{\"o}ntgenmikroskopiemethoden auf den Einsatz optischer Elemente. Dreidimensionale Bildgebung wird durch einen linearlaminographischen Aufnahmemodus realisiert, bei dem unterschiedliche Durchstrahlungsrichtungen durch das Objekt durch eine relative Verschiebung von Quelle und Detektor zustande kommen. Die R{\"o}ntgenquelle des Mikroskops besteht aus einer zu einer Nanofokusr{\"o}ntgenr{\"o}hre um- gebauten Elektronenmikrosonde mit 30 kV Beschleunigungsspannung (dies entspricht einer Wellenl{\"a}nge von bis zu 0,041 nm). Durch die Elektronenoptik kann ein intensiver Elektronen- strahl anstelle eine Probe auf ein Transmissionstarget fokussiert werden. In dieser Arbeit wird eine M{\"o}glichkeit evaluiert, die Schichtdicke der r{\"o}ntgenaktiven Schicht des Transmissionstar- gets f{\"u}r die gegebene Beschleunigungsspannung zu optimieren. Dabei werden eine Schichtdi- cke f{\"u}r maximale R{\"o}ntgenleistung (700 nm Wolfram) und eine f{\"u}r maximale R{\"o}ntgenleistung bezogen auf die entstehende Quellfleckgr{\"o}ße (100 nm Wolfram) identifiziert. Dadurch erreicht dieses System eine laterale Ortsaufl{\"o}sung von 197 nm, gemessen an einem Siemensstern. Diese ist eine Gr{\"o}ßenordnung besser als bei modernen SubμCT-Anlagen, die zur zerst{\"o}rungsfrei- en Pr{\"u}fung eingesetzt werden, und einen Faktor 2 besser als bei Laborr{\"o}ntgenmikroskopen basierend auf Fresnel'schen Zonenplatten. Abgesehen von der lateralen Aufl{\"o}sung bei hochkontrastigen Objekten werden auch die Abbil- dungseigenschaften f{\"u}r schwach absorbierende Proben mit Inline-Phasenkontrastbildgebung untersucht. Dazu wird eine Methode entwickelt mit der anhand der gegebenen Anlagenpara- meter der optimale Quell-Objekt-Abstand zur Maximierung des Fringe-Kontrasts gefunden werden kann. Dabei wird die Auspr{\"a}gung des Fringe-Kontrasts auf die Phase -iα zur{\"u}ck gef{\"u}hrt. Das vorgeschlagene Modell wird durch Messungen am R{\"o}ntgenmikroskop und an einer weiteren R{\"o}ngtenanlage verifiziert. Zur Beurteilung der dreidimensionalen Bildgebung mit dem vorgeschlagenen linearlaminogra- phischen Aufnahmemodus kann dieser auf eine konventionelle Computertomographie mit ein- geschr{\"a}nktem Winkelbereich zur{\"u}ckgef{\"u}hrt werden und so die maximal erreichbare Winkel- information bestimmt werden. Des Weiteren werden numerische Berechnungen durchgef{\"u}hrt, um die Einfl{\"u}sse von Rauschen und geometrischen Vorgaben einsch{\"a}tzen zu k{\"o}nnen. Ein experimenteller Test des Laminographiesystems wird anhand eines hochkontrastigen (Fres- nel'sche Zonenplatte) und eines niederkontrastigen Objekts (Kohlefasergewebe) durchgef{\"u}hrt. Es zeigte sich, dass die laterale Aufl{\"o}sung w{\"a}hrend der dreidimensionalen Rekonstruktion gut erhalten bleibt, die Tiefenaufl{\"o}sung aber nicht die gleiche Qualit{\"a}t erreicht. Außerdem konnte festgestellt werden, dass die Tiefenaufl{\"o}sung sehr stark von der Geometrie und Zusammen- setzung des untersuchten Objekts abh{\"a}ngt.}, subject = {Harte R{\"o}ntgenstrahlung}, language = {de} } @phdthesis{Balles2021, author = {Balles, Andreas}, title = {In-line phase contrast and grating interferometry at a liquid-metal-jet source with micrometer resolution}, doi = {10.25972/OPUS-23591}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {As a non-destructive testing method, X-ray imaging has proved to be suitable for the examination of a variety of objects. The measurement principle is based on the attenuation of X-rays caused by these objects. This attenuation can be recorded as shades of intensity using X-ray detectors and thus contains information about the inner structure of the investigated object. Since X-rays are electromagnetic waves, they also experience a change of phase in addition to their attenuation while penetrating an object. In general, imaging methods based on this effect are referred to as phase contrast imaging techniques. In the laboratory, the two mainly used methods are the propagation based phase contrast or in-line phase contrast and the grating interferometry. While in-line phase contrast - under certain conditions - shows edge enhancement at interfaces due to interference, phase contrast in the grating interferometry is only indirectly measurable by the use of several gratings. In addition to phase contrast, grating interferometry provides access to the so-called dark-field imaging contrast, which measures the scattering of X-rays caused by an object. These two imaging techniques, together with a novel concept of laboratory X-ray sources, the liquid-metal-jet, form the main part of this work. Compared to conventional X-ray sources, the liquid-metal-jet source offers higher brightness. The term brightness is defined by the number of X-ray photons per second, emitting area (area of the X-ray spot) and solid angle at which they are emitted. On the basis of this source, a high resolution in-line phase contrast setup was partially developed in the scope of this work. Several computed tomographies show the feasibility of in-line phase contrast and the improvement of image quality by applying phase retrieval algorithms. Moreover, the determination of optimized sample positions for in-line phase contrast imaging is treated at which the edge enhancement is maximized. Based on primitive fiber objects, this optimization has proven to be a good approximation. With its high brightness in combination with a high spatial coherence, the liquid-metal-jet source is also interesting for grating interferometry. The development of such a setup is also part of this work. The overall concept and the characterization of the setup is presented as well as the applicability and its limits for the investigation of various objects. Due to the very unique concept of this grating interferometer it was possible to realize a modified interferometer system by using a single grating only. Its concept and results are also presented in this work. Furthermore, a grating interferometer based on a microfocus X-ray tube was tested regarding its performance. Thereby, parameters like the anode material, acquisition geometry and gratings were altered in order to find the advantages and disadvantages of each configuration.}, subject = {Phasenkontrastverfahren}, language = {en} }