@article{PelosiFioreDiMatteoetal.2021, author = {Pelosi, Andrea and Fiore, Piera Filomena and Di Matteo, Sabina and Veneziani, Irene and Caruana, Ignazio and Ebert, Stefan and Munari, Enrico and Moretta, Lorenzo and Maggi, Enrico and Azzarone, Bruno}, title = {Pediatric tumors-mediated inhibitory effect on NK cells: the case of neuroblastoma and Wilms' tumors}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers13102374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239615}, year = {2021}, abstract = {Natural killer (NK) cells play a key role in the control of cancer development, progression and metastatic dissemination. However, tumor cells develop an array of strategies capable of impairing the activation and function of the immune system, including NK cells. In this context, a major event is represented by the establishment of an immunosuppressive tumor microenvironment (TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages, regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions, cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions. The different mechanisms by which stromal and tumor cells impair NK cell function have been particularly explored in adult solid tumors and, in less depth, investigated and discussed in a pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and Wilms' tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors are characterized by the presence of stromal cells acting through the release of immunosuppressive molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could lead to a more performant diagnostic approach and to the development of novel immunotherapeutic strategies targeting the identified cellular and molecular targets.}, language = {en} } @article{FioreVaccaTuminoetal.2021, author = {Fiore, Piera Filomena and Vacca, Paola and Tumino, Nicola and Besi, Francesca and Pelosi, Andrea and Munari, Enrico and Marconi, Marcella and Caruana, Ignazio and Pistoia, Vito and Moretta, Lorenzo and Azzarone, Bruno}, title = {Wilms' tumor primary cells display potent immunoregulatory properties on NK cells and macrophages}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers13020224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222981}, year = {2021}, abstract = {The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm's Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56\(^+\)/CD133\(^-\)) or an epithelial (CD56\(^-\)/CD133\(^+\)) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression.}, language = {en} } @article{BoeckelKarstenGoepeletal.2023, author = {Boeckel, Hannah and Karsten, Christian M. and G{\"o}pel, Wolfgang and Herting, Egbert and Rupp, Jan and H{\"a}rtel, Christoph and Hartz, Annika}, title = {Increased expression of anaphylatoxin C5a-receptor-1 in neutrophils and natural killer cells of preterm infants}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms241210321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321196}, year = {2023}, abstract = {Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56\(^{dim}\) subset and the CD56\(^-\) subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.}, language = {en} }