@phdthesis{Then2017, author = {Then, Patrick}, title = {Waveguide-based single molecule detection in flow}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory.}, subject = {Optik}, language = {en} }