@article{WeidnerLardenoijeEijssenetal.2019, author = {Weidner, Magdalena T. and Lardenoije, Roy and Eijssen, Lars and Mogavero, Floriana and De Groodt, Lilian P. M. T. and Popp, Sandy and Palme, Rupert and F{\"o}rstner, Konrad U. and Strekalova, Tatyana and Steinbusch, Harry W. M. and Schmitt-B{\"o}hrer, Angelika G. and Glennon, Jeffrey C. and Waider, Jonas and van den Hove, Daniel L. A. and Lesch, Klaus-Peter}, title = {Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2019.00460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201340}, pages = {460}, year = {2019}, abstract = {Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.}, language = {en} } @article{KleefeldtBoemmelBroedeetal.2019, author = {Kleefeldt, Florian and B{\"o}mmel, Heike and Broede, Britta and Thomsen, Michael and Pfeiffer, Verena and W{\"o}rsd{\"o}rfer, Philipp and Karnati, Srikanth and Wagner, Nicole and Rueckschloss, Uwe and Erg{\"u}n, S{\"u}leyman}, title = {Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction}, series = {Aging Cell}, volume = {2019}, journal = {Aging Cell}, number = {18}, doi = {10.1111/acel.13025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201231}, pages = {e13025}, year = {2019}, abstract = {Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF-α is CEACAM1-dependently upregulated in the aging vasculature. Vice versa, TNF-α induces CEACAM1 expression. This results in a feed-forward loop in the aging vasculature that maintains a chronic pro-inflammatory milieu. Furthermore, we demonstrate that age-associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age-dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR-2 signaling. Consequently, aging-related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis.}, language = {en} }