@phdthesis{Schulze2020, author = {Schulze, Andrea}, title = {Investigating the mechanism of the Hsp90 molecular chaperone using photoinduced electron transfer fluorescence quenching}, doi = {10.25972/OPUS-16215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162155}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The molecular chaperone Hsp90 facilitates the folding and activation of a wide array of structurally and functionally diverse client proteins. Hsp90 presents a central node of protein homeostasis and is frequently involved in the development of many human diseases. Although Hsp90 is a promising target for disease treatment, the mechanism by which Hsp90 facilitates client recognition and maturation is poorly understood. The shape of the homodimeric protein resembles a molecular clamp that opens and closes in response to binding and hydrolysis of ATP. Structural studies reveal a network of distinct local conformational rearrangements that coordinate the slow transition into the hydrolysis-active, closed state configuration (time order of minutes). However, the kinetics of local conformational changes remain elusive because spectroscopic tools that can detect them have been missing so far. Fluorescence quenching of extrinsic fluorophores by the natural amino acid Tryptophan is based on a photoinduced electron transfer (PET) reaction, which requires sub-nanometer contact between fluorophore and Tryptophan. This quenching mechanism has been developed into a 1-nm spectroscopic tool for the detection of rapid protein folding dynamics. Within the scope of this doctoral thesis, PET-reporter systems were designed to investigate the kinetics of local conformational motions that are part of the mechanistic core of the Hsp90 chaperone cycle. ATP-triggered kinetics of closure of the ATP-lid as well as swapping of the N-terminal ß-strand across subunits and association of the N-terminal and middle-domain were estimated in solution. Bulk experiments revealed that local motions occur on similar timescales and are in good agreement with the ATP-hydrolysis rate. Functional mutations demonstrated that local motions act cooperatively. Furthermore, the lid was shown to close via a two-step process consisting of a rapid lid-reconfiguration in direct response to ATP-binding, followed by slow closure of the lid. The co-chaperone Aha1 seems to act early in the chaperone cycle by remodelling of the lid and by stabilization of apo Hsp90 in a NM-domain pre-associated conformation. A two-colour single-molecule PET microscopy method was developed to observe local motions at remote positions simultaneously and in real-time. Thus, directionality within the network of local conformational changes could be revealed. In a first attempt, the feasibility of detecting PET-complexes on the single-molecule surface was tested on Hsp90 constructs that report on only one motion (one-colour single-molecule PET microscopy). PET-quenched complexes could be distinguished from photobleached fluorophores through oxidation by molecular oxygen, resulting in fluorescence recovery. In two-colour experiments, a dimmed state was identified for PET-quenched complexes, but not for all of the used PET-reporter systems. Results suggest that local motions occur simultaneously within the time-resolution of the experiment (0.3 sec). Furthermore, bi-exponential kinetics of transition into the closed clamp configuration indicate a more complex mechanism of clamp-closure than of clamp-opening, which could be well described by a mono-exponential function.}, subject = {Hitzeschock-Proteine}, language = {en} } @phdthesis{Heil2020, author = {Heil, Hannah Sophie}, title = {Sharpening super-resolution by single molecule localization microscopy in front of a tuned mirror}, doi = {10.25972/OPUS-20432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204329}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The „Resolution Revolution" in fluorescence microscopy over the last decade has given rise to a variety of techniques that allow imaging beyond the diffraction limit with a resolution power down into the nanometer range. With this, the field of so-called super-resolution microscopy was born. It allows to visualize cellular architecture at a molecular level and thereby achieve a resolution level that had been previously only accessible by electron microscopy approaches. One of these promising techniques is single molecule localization microscopy (SMLM) in its most varied forms such as direct stochastic optical reconstruction microscopy (dSTORM) which are based on the temporal separation of the emission of individual fluorophores. Localization analysis of the subsequently taken images of single emitters eventually allows to reconstruct an image containing super-resolution information down to typically 20 nm in a cellular setting. The key point here is the localization precision, which mainly depends on the image contrast generated the by the individual fluorophore's emission. Thus, measures to enhance the signal intensity or reduce the signal background allow to increase the image resolution achieved by dSTORM. In my thesis, this is achieved by simply adding a reflective metal-dielectric nano-coating to the microscopy coverslip that serves as a tunable nano-mirror. I have demonstrated that such metal-dielectric coatings provide higher photon yield at lower background and thus substantially improve SMLM performance by a significantly increased localization precision, and thus ultimately higher image resolution. The strength of this approach is that ─ except for the coated cover glass ─ no specialized setup is required. The biocompatible metal-dielectric nano-coatings are fabricated directly on microscopy coverslips and have a simple three-ply design permitting straightforward implementation into a conventional fluorescence microscope. The introduced improved lateral resolution with such mirror-enhanced STORM (meSTORM) not only allows to exceed Widefield and Total Internal Reflection Fluorescence (TIRF) dSTORM performance, but also offers the possibility to measure in a simplified setup as it does not require a special TIRF objective lens. The resolution improvement achieved with meSTORM is both spectrally and spatially tunable and thus allows for dual-color approaches on the one hand, and selectively highlighting region above the cover glass on the other hand, as demonstrated here. Beyond lateral resolution enhancement, the clear-cut profile of the highlighted region provides additional access to the axial dimension. As shown in my thesis, this allows for example to assess the three-dimensional architecture of the intracellular microtubule network by translating the local localization uncertainty to a relative axial position. Even beyond meSTORM, a wide range of membrane or surface imaging applications may benefit from the selective highlighting and fluorescence enhancing provided by the metal-dielectric nano-coatings. This includes for example, among others, live-cell Fluorescence Correlation Spectroscopy and Fluorescence Resonance Energy Transfer studies as recently demonstrated.}, subject = {Fluoreszenz}, language = {en} }