@article{HofgaardJodalBommertetal.2012, author = {Hofgaard, Peter O. and Jodal, Henriette C. and Bommert, Kurt and Huard, Bertrand and Caers, Jo and Carlsen, Harald and Schwarzer, Rolf and Sch{\"u}nemann, Nicole and Jundt, Franziska and Lindeberg, Mona M. and Bogen, Bjarne}, title = {A Novel Mouse Model for Multiple Myeloma (MOPC315.BM) That Allows Noninvasive Spatiotemporal Detection of Osteolytic Disease}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0051892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131117}, pages = {e51892}, year = {2012}, abstract = {Multiple myeloma (MM) is a lethal human cancer characterized by a clonal expansion of malignant plasma cells in bone marrow. Mouse models of human MM are technically challenging and do not always recapitulate human disease. Therefore, new mouse models for MM are needed. Mineral-oil induced plasmacytomas (MOPC) develop in the peritoneal cavity of oil-injected BALB/c mice. However, MOPC typically grow extramedullary and are considered poor models of human MM. Here we describe an in vivo-selected MOPC315 variant, called MOPC315.BM, which can be maintained in vitro. When injected i.v. into BALB/c mice, MOPC315.BM cells exhibit tropism for bone marrow. As few as 10\(^4\) MOPC315.BM cells injected i.v. induced paraplegia, a sign of spinal cord compression, in all mice within 3-4 weeks. MOPC315.BM cells were stably transfected with either firefly luciferase (MOPC315.BM.Luc) or DsRed (MOPC315.BM.DsRed) for studies using noninvasive imaging. MOPC315.BM.Luc cells were detected in the tibiofemoral region already 1 hour after i.v. injection. Bone foci developed progressively, and as of day 5, MM cells were detected in multiple sites in the axial skeleton. Additionally, the spleen (a hematopoietic organ in the mouse) was invariably affected. Luminescent signals correlated with serum myeloma protein concentration, allowing for easy tracking of tumor load with noninvasive imaging. Affected mice developed osteolytic lesions. The MOPC315.BM model employs a common strain of immunocompetent mice (BALB/c) and replicates many characteristics of human MM. The model should be suitable for studies of bone marrow tropism, development of osteolytic lesions, drug testing, and immunotherapy in MM.}, language = {en} } @article{GlutschKneitzGesierichetal.2021, author = {Glutsch, Valerie and Kneitz, Hermann and Gesierich, Anja and Goebeler, Matthias and Haferkamp, Sebastian and Becker, J{\"u}rgen C. and Ugurel, Selma and Schilling, Bastian}, title = {Activity of ipilimumab plus nivolumab in avelumab-refractory Merkel cell carcinoma}, series = {Cancer Immunology, Immunotherapy}, volume = {70}, journal = {Cancer Immunology, Immunotherapy}, number = {7}, issn = {14320851}, doi = {10.1007/s00262-020-02832-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265635}, pages = {2087-2093}, year = {2021}, abstract = {Background Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine cutaneous malignancy with poor prognosis. In Europe, approved systemic therapies are limited to the PD-L1 inhibitor avelumab. For avelumab-refractory patients, efficient and safe treatment options are lacking. Methods At three different sites in Germany, clinical and molecular data of patients with metastatic MCC being refractory to the PD-L1 inhibitor avelumab and who were later on treated with combined IPI/NIVO were retrospectively collected and evaluated. Results Five patients treated at three different academic sites in Germany were enrolled. Three out of five patients investigated for this report responded to combined IPI/NIVO according to RECIST 1.1. Combined immunotherapy was well tolerated without any grade II or III immune-related adverse events. Two out of three responders to IPI/NIVO received platinum-based chemotherapy in between avelumab and combined immunotherapy. Conclusion In this small retrospective study, we observed a high response rate and durable responses to subsequent combined immunotherapy with IPI/NIVO in avelumab-refractory metastatic MCC patients. In conclusion, our data suggest a promising activity of second- or third-line PD-1- plus CTLA-4-blockade in patients with anti-PD-L1-refractory MCC.}, language = {en} } @article{ZirkelCecilSchaeferetal.2012, author = {Zirkel, J. and Cecil, A. and Sch{\"a}fer, F. and Rahlfs, S. and Ouedraogo, A. and Xiao, K. and Sawadogo, S. and Coulibaly, B. and Becker, K. and Dandekar, T.}, title = {Analyzing Thiol-Dependent Redox Networks in the Presence of Methylene Blue and Other Antimalarial Agents with RT-PCR-Supported in silico Modeling}, series = {Bioinformatics and Biology Insights}, volume = {6}, journal = {Bioinformatics and Biology Insights}, doi = {10.4137/BBI.S10193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123751}, pages = {287-302}, year = {2012}, abstract = {BACKGROUND: In the face of growing resistance in malaria parasites to drugs, pharmacological combination therapies are important. There is accumulating evidence that methylene blue (MB) is an effective drug against malaria. Here we explore the biological effects of both MB alone and in combination therapy using modeling and experimental data. RESULTS: We built a model of the central metabolic pathways in P. falciparum. Metabolic flux modes and their changes under MB were calculated by integrating experimental data (RT-PCR data on mRNAs for redox enzymes) as constraints and results from the YANA software package for metabolic pathway calculations. Several different lines of MB attack on Plasmodium redox defense were identified by analysis of the network effects. Next, chloroquine resistance based on pfmdr/and pfcrt transporters, as well as pyrimethamine/sulfadoxine resistance (by mutations in DHF/DHPS), were modeled in silico. Further modeling shows that MB has a favorable synergism on antimalarial network effects with these commonly used antimalarial drugs. CONCLUSIONS: Theoretical and experimental results support that methylene blue should, because of its resistance-breaking potential, be further tested as a key component in drug combination therapy efforts in holoendemic areas.}, language = {en} } @article{ApsemidouFuellerIdelevichetal.2020, author = {Apsemidou, Athanasia and F{\"u}ller, Miriam Antonie and Idelevich, Evgeny A. and Kurzai, Oliver and Tragiannidis, Athanasios and Groll, Andreas H.}, title = {Candida lusitaniae breakthrough fungemia in an immuno-compromised adolescent: case report and review of the literature}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof6040380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220125}, year = {2020}, abstract = {Candida lusitaniae is a rare cause of candidemia that is known for its unique capability to rapidly acquire resistance to amphotericin B. We report the case of an adolescent with grade IV graft-vs.-host disease after hematopoietic cell transplantation who developed catheter-associated C. lusitaniae candidemia while on therapeutic doses of liposomal amphotericin B. We review the epidemiology of C. lusitaniae bloodstream infections in adult and pediatric patients, the development of resistance, and its role in breakthrough candidemia. Appropriate species identification, in vitro susceptibility testing, and source control are pivotal to optimal management of C. lusitaniae candidemia. Initial antifungal therapy may consist of an echinocandin and be guided by in vitro susceptibility and clinical response.}, language = {en} } @article{FeldheimKesslerMonoranuetal.2019, author = {Feldheim, Jonas and Kessler, Almuth F. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Changes of O\(^6\)-Methylguanine DNA Methyltransferase (MGMT) promoter methylation in glioblastoma relapse—a meta-analysis type literature review}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193040}, year = {2019}, abstract = {Methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter has emerged as strong prognostic factor in the therapy of glioblastoma multiforme. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. MGMT promoter methylation has implications for the clinical course of patients. In recent years, there have been observations of patients changing their MGMT promoter methylation from primary tumor to relapse. Still, data on this topic are scarce. Studies often consist of only few patients and provide rather contrasting results, making it hard to draw a clear conclusion on clinical implications. Here, we summarize the previous publications on this topic, add new cases of changing MGMT status in relapse and finally combine all reports of more than ten patients in a statistical analysis based on the Wilson score interval. MGMT promoter methylation changes are seen in 115 of 476 analyzed patients (24\%; CI: 0.21-0.28). We discuss potential reasons like technical issues, intratumoral heterogeneity and selective pressure of therapy. The clinical implications are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic}, language = {en} } @article{MasicHurdayalNieuwenhuizenetal.2012, author = {Masic, Anita and Hurdayal, Ramona and Nieuwenhuizen, Natalie E. and Brombacher, Frank and Moll, Heidrun}, title = {Dendritic Cell-Mediated Vaccination Relies on Interleukin-4 Receptor Signaling to Avoid Tissue Damage after Leishmania major Infection of BALB/c Mice}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {7}, doi = {10.1371/journal.pntd.0001721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133869}, year = {2012}, abstract = {Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor \(\alpha\) (IL-4R \(\alpha\))-deficient (CD11c\(^{cre}\)IL-4R \(\alpha^{-/lox}\) BALB/c mice were given either wt or IL-4R \(\alpha\)-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2x10\(^5\) stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4R alpha-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4R alpha-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11c\(^{cre}\)IL-4R \(\alpha^{-/lox}\) mice immunized with CpG ODN-exposed LmAg-loaded IL-4R \(\alpha\)-deficient DC, indicating the influence of IL-4R \(\alpha\)-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4R \(\alpha\) signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.}, language = {en} } @article{BensaadFavaroLewisetal.2014, author = {Bensaad, Karim and Favaro, Elena and Lewis, Caroline A. and Peck, Barrie and Lord, Simon and Collins, Jennifer M. and Pinnick, Katherine E. and Wigfield, Simon and Buffa, Francesca M. and Li, Ji-Liang and Zhang, Qifeng and Wakelam, Michael J. O. and Karpe, Fredrik and Schulze, Almut and Harris, Adrian L.}, title = {Fatty Acid Uptake and Lipid Storage Induced by HIF-1 alpha Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation}, series = {Cell Reports}, volume = {9}, journal = {Cell Reports}, number = {1}, issn = {2211-1247}, doi = {10.1016/j.celrep.2014.08.056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115162}, pages = {349-365}, year = {2014}, abstract = {An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1 alpha (HIF-1 alpha)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O-2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via beta-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.}, language = {en} } @article{SassVanAckerFoerstneretal.2015, author = {Sass, Andrea M. and Van Acker, Heleen and F{\"o}rstner, Konrad U. and Van Nieuwerburgh, Filip and Deforce, Dieter and Vogel, J{\"o}rg and Coenye, Tom}, title = {Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {775}, doi = {10.1186/s12864-015-1993-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139748}, year = {2015}, abstract = {Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation.}, language = {en} } @phdthesis{Jacobs2011, author = {Jacobs, Graeme Brendon}, title = {HIV-1 resistance analyses from therapy-na{\"i}ve patients in South Africa, Tanzania and the characterization of a new HIV-1 subtype C proviral molecular clone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67319}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The acquired immunodeficiency syndrome (AIDS) is currently the most infectious disease worldwide. It is caused by the human immunodeficiency virus (HIV). At the moment there are ~33.3 million people infected with HIV. Sub-Saharan Africa, with ~22.5 million people infected accounts for 68\% of the global burden. In most African countries antiretroviral therapy (ART) is administered in limited-resource settings with standardised first- and second-line ART regimens. During this study I analysed the therapy-na{\"i}ve population of Cape Town, South Africa and Mwanza, Tanzania for any resistance associated mutations (RAMs) against protease inhibitors, nucleoside reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors. My results indicate that HIV-1 subtype C accounts for ~95\% of all circulating strains in Cape Town, South Africa. I could show that ~3.6\% of the patient derived viruses had RAMs, despite patients being therapy-na{\"i}ve. In Mwanza, Tanzania the HIV drug resistance (HIVDR) prevalence in the therapy-na{\"i}ve population was 14.8\% and significantly higher in the older population, >25 years. Therefore, the current WHO transmitted HIVDR (tHIVDR) survey that is solely focused on the transmission of HIVDR and that excludes patients over 25 years of age may result in substantial underestimation of the prevalence of HIVDR in the therapy-na{\"i}ve population. Based on the prevalence rates of tHIVDR in the study populations it is recommended that all HIV-1 positive individuals undergo a genotyping resistance test before starting ART. I also characterized vif sequences from HIV-1 infected patients from Cape Town, South Africa as the Vif protein has been shown to counteract the antiretroviral activity of the cellular APOBEC3G/F cytidine deaminases. There is no selective pressure on the HIV-1 Vif protein from current ART regimens and vif sequences was used as an evolutionary control. As the majority of phenotypic resistance assays are still based on HIV-1 subtype B, I wanted to design an infectious HIV-1 subtype C proviral molecular clone that can be used for in vitro assays based on circulating strains in South Africa. Therefore, I characterized an early primary HIV-1 subtype C isolate from Cape Town, South Africa and created a new infectious subtype C proviral molecular clone (pZAC). The new pZAC virus has a significantly higher transient viral titer after transfection and replication rate than the previously published HIV-1 subtype C virus from Botswana. The optimized proviral molecular clone, pZAC could be used in future cell culture and phenotypic HIV resistance assays regarding HIV-1 subtype C.}, subject = {HIV}, language = {en} } @article{DuehringGermerodtSkerkaetal.2015, author = {D{\"u}hring, Sybille and Germerodt, Sebastian and Skerka, Christine and Zipfel, Peter F. and Dandekar, Thomas and Schuster, Stefan}, title = {Host-pathogen interactions between the human innate immune system and Candida albicans - understanding and modeling defense and evasion strategies}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {625}, doi = {10.3389/fmicb.2015.00625}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151621}, year = {2015}, abstract = {The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.}, language = {en} } @article{KaiserVoggFuerstetal.2015, author = {Kaiser, Bettina and Vogg, Gerd and F{\"u}rst, Ursula B. and Albert, Markus}, title = {Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants}, series = {Frontiers in Plant Science}, volume = {6}, journal = {Frontiers in Plant Science}, number = {45}, doi = {10.3389/fpls.2015.00045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144091}, year = {2015}, abstract = {By comparison with plant microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.}, language = {en} } @article{FirdessaGoodAmstaldenetal.2015, author = {Firdessa, Rebuma and Good, Liam and Amstalden, Maria Cecilia and Chindera, Kantaraja and Kamaruzzaman, Nor Fadhilah and Schultheis, Martina and R{\"o}ger, Bianca and Hecht, Nina and Oelschlaeger, Tobias A. and Meinel, Lorenz and L{\"u}hmann, Tessa and Moll, Heidrun}, title = {Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB)}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0004041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148162}, pages = {e0004041}, year = {2015}, abstract = {Background Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. Methodology/Principal Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. Conclusions Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators.}, language = {en} } @article{SinghKingstonGuptaetal.2015, author = {Singh, Amit K. and Kingston, Joseph J. and Gupta, Shishir K. and Batra, Harsh V.}, title = {Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {1407}, doi = {10.3389/fmicb.2015.01407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136114}, year = {2015}, abstract = {Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y pestis LcrV (100-270 aa) and YopE (50-213 aa) proteins conferred complete passive and active protection against lethal Y enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y enterocolitica 8081 rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up regulation of both Th1 (INF-\(\alpha\), IFN-\(\gamma\), IL 2, and IL 12) and Th2 (IL 4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100\%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5\%) and rV (25\%) groups when IP challenged with Y enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens.}, language = {en} } @article{NeumannOhlsenDonatetal.2015, author = {Neumann, Yvonne and Ohlsen, Knut and Donat, Stefanie and Engelmann, Susanne and Kusch, Harald and Albrecht, Dirk and Cartron, Michael and Hurd, Alexander and Foster, Simon J.}, title = {The effect of skin fatty acids on Staphylococcus aureus}, series = {Archives of Microbiology}, volume = {197}, journal = {Archives of Microbiology}, doi = {10.1007/s00203-014-1048-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121657}, pages = {245-67}, year = {2015}, abstract = {Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS}, language = {en} } @article{NaseemDandekar2012, author = {Naseem, Muhammad and Dandekar, Thomas}, title = {The Role of Auxin-Cytokinin Antagonism in Plant-Pathogen Interactions}, series = {PLOS Pathogens}, volume = {8}, journal = {PLOS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1003026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131901}, pages = {e1003026}, year = {2012}, abstract = {No abstract available.}, language = {en} } @article{DiSanteErdmengerGreiteretal.2020, author = {Di Sante, Domenico and Erdmenger, Johanna and Greiter, Martin and Matthaiakakis, Ioannis and Meyer, Ren{\´e} and Fernandez, David Rodr{\´i}guez and Thomale, Ronny and van Loon, Erik and Wehling, Tim}, title = {Turbulent hydrodynamics in strongly correlated Kagome metals}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-17663-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230380}, year = {2020}, abstract = {A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments. Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal, inferring turbulent flow of viscous electron fluids.}, language = {en} } @article{EhrenschwenderBittnerSeiboldetal.2014, author = {Ehrenschwender, M. and Bittner, S. and Seibold, K. and Wajant, H.}, title = {XIAP-targeting drugs re-sensitize PIK3CA-mutated colorectal cancer cells for death receptor-induced apoptosis}, series = {Cell Death \& Disease}, volume = {5}, journal = {Cell Death \& Disease}, issn = {2041-4889}, doi = {10.1038/cddis.2014.534}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114374}, pages = {e1570}, year = {2014}, abstract = {Mutations in the oncogenic PIK3CA gene are found in 10-20\% of colorectal cancers (CRCs) and are associated with poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic TRAIL death receptor antibodies emerged as promising anti-neoplastic therapeutics, but to date failed to prove their capability in the clinical setting as especially primary tumors exhibit high rates of TRAIL resistance. In our study, we investigated the molecular mechanisms underlying TRAIL resistance in CRC cells with a mutant PIK3CA (PIK3CA-mut) gene. We show that inhibition of the constitutively active phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway only partially overcame TRAIL resistance in PIK3CA-mut-protected HCT116 cells, although synergistic effects of TRAIL plus PI3K, Akt or cyclin-dependent kinase (CDK) inhibitors could be noted. In sharp contrast, TRAIL triggered full-blown cell death induction in HCT116 PIK3CA-mut cells treated with proteasome inhibitors such as bortezomib and MG132. At the molecular level, resistance of HCT116 PIK3CA-mut cells against TRAIL was reflected by impaired caspase-3 activation and we provide evidence for a crucial involvement of the E3-ligase X-linked inhibitor of apoptosis protein (XIAP) therein. Drugs interfering with the activity and/or the expression of XIAP, such as the second mitochondria-derived activator of caspase mimetic BV6 and mithramycin-A, completely restored TRAIL sensitivity in PIK3CA-mut-protected HCT116 cells independent of a functional mitochondrial cell death pathway. Importantly, proteasome inhibitors and XIAP-targeting agents also sensitized other CRC cell lines with mutated PIK3CA for TRAIL-induced cell death. Together, our data suggest that proteasome-or XIAP-targeting drugs offer a novel therapeutic approach to overcome TRAIL resistance in PIK3CA-mutated CRC.}, language = {en} }