@phdthesis{Nagl2022, author = {Nagl, Patrick Alexander}, title = {Chemistry meets Cancer Immunotherapy: Synthesis and Characterization of Hapten-like Compounds for Selective Immunotherapy}, doi = {10.25972/OPUS-21138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211385}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Chimeric antigen receptors (CARs) are able to specifically direct T cells to tumor antigens and therapy with anti-CD19 CARs has already cured cancer patients with B-cell lymphomas who have undergone long-term therapy non-successful. Despite this impressive result, the therapy is currently only approved as a last treatment option for blood cancers due to its life-threatening deficiencies. For patient safety and to enable additional application such as the treatment of solid tumors, CAR-T cells must be controllable, e. g. by chemically programmable CARs (cpCARs) regulated by hapten-like compounds. This thesis reports the synthesis and characterization of such hapten-like compounds. In the first step, seven different warheads with two different spacers were bound to biotin in order to find a suitable warhead for programming the cpCAR. In a second step, synthetic routes for the three pharmacophores folate, c(RGD), and an RGD peptidomimetic were developed. The routes allow the modification of the pharmacophores with one of the warheads from the first step. CuAAC was chosen as a bioorthogonal approach to link pharmacophores and warheads. In total, three different pharmacophores were modified with the 1,3-diketone motif of compound 21 leading to 112, 113 and 128. Activation of the T-cell signaling cascade was tested after binding of these hapten-like compounds to the cpCAR in the presence of suitable target structures. For 112, only a slight, non-significant, activation of the T-cell signaling cascade was observed, whereas for 113 and 128, a significant activation of the T-cell signaling cascade was observed. The poor solubility of the folate compounds led to alternative strategies. Folic acid was exchanged by pteroic acid and the bifunctional, linear compounds were enlarged to trifunctional dendrimers. Besides the reported regioisomer in 112, a second one, which was not reported to date, occurred by the cyclization of the linear RGD pentapeptide leading to 113. After the reported synthesis of an RGD peptidomimetic analogous to 128 could not be reproduced, a new synthetic route was developed. It also consists of 17 steps, but reduces the number of linear steps from 13 to 10. Moreover, the developed route contains an asymmetric hydrogenation step and is, compared to the published one, more flexible by the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC). In addition, an unknown reaction was observed. Instead of the formation of a Schiff base in the reductive amination of 129, an insertion of propargylamine occurred forming 131. The reaction is almost quantitative and in high purity. After requiring no purification, it could be predestined for industrial purposes, such as the synthesis of N-functionalized 1,2-dihydroquinolines or as a building block with various orthogonal functional groups. Besides the sulfonamide 16, the diketone (21, 27, 31) and lactam compounds (39 - 41), experiments on adapter molecules with further warheads were performed. In the synthesis of a proadapter approach, in which the warhead is formed only after the retro-aldol reaction catalyzed by the mAb, 6 of 10 steps were successfully performed. A newly developed synthesis to keto-sulfonyl and keto-sulfoxide compounds could not be completed but was performed on a small scale to the point of keto-sulfonyl and keto-sulfoxide. Furthermore, a universal synthesis route was designed to allow the introduction of the warhead at the end of the synthesis by acylation. Thus, after 5 shared steps, 3 of them in quantitative yield, different warheads may be introduced. Moreover, this also facilitates the purification and the analysis of the compounds by the absence of tautomerism or labile groups. However, the acylation experiments were not successful with either the acid cyanide or the Weinreb amide. In summary, this thesis has proven that the 1,3-diketone motif is a suitable warhead for programming the cpCAR, which was developed by Hudecek et al. (unpublished data). The hapten-like compounds 112, 113 and 128 simultaneously bind to integrin \${\alpha}_v{\beta}_3\$ and the cpCAR activating the T-cell signaling cascade. The modular synthesis strategy and the use of the bioorthogonal CuAAC allow straightforward access to these valuable immunotherapeutics but revealed the need for an additional purification step to remove copper ions.}, subject = {Organische Synthese}, language = {en} } @phdthesis{Diwischek2008, author = {Diwischek, Florian}, title = {Development of synthesis pathways and characterization of cerulenin analogues as inhibitors of the fatty acid biosynthesis of Mycobacterium tuberculosis and of efflux pump resistant Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27532}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The work deals with the synthesis and characterization of cerulenin analogues as inhibitors of efflux pump mediated resistance of Candida albicans isolates and as inhibitors of the fatty acid synthesis enzyme KasA of Mycobacterium tuberculosis. Cerulenin was chosen as the lead structure, being a substrate of the efflux pumps in Candida albicans on one hand and therefore variations on the structure could lead to a blocking of the efflux pumps as in the case of tetracycline and inhibitor 13-CPTC of the TetB efflux pump. On the other hand, cerulenin is a known inhibitor of the FAS system but inhibition is unselective in type I and II FAS. Therefore, analogues could result in increased selectivity towards the type II FAS system in M. tuberculosis. The first cerulenin derivatives were prepared by coupling 2,3-dihydrofuran to the before synthesized 1-octaniodide, followed by ring opening and oxidation in one step by chromic acid and transfer of the resulting 4-keto acid to amides to give analogues 4a-d, 4e was prepared in analogy. To include the epoxide function especially with regard to the mechanism of action of cerulenin in the FAS system (considering known crystal structures of cerulenin and the KasA analogue of E. coli) tetrahydro- and dihydrocerulenin analogues were synthesized. Starting from the corresponding aldehyde, lactone 5 (tetrahydrocerulenin analogues) was obtained via two different routes A and B. Route A included the coupling of the aldehyde 1-nonanal to propiolic acid via a Grignard reaction with subsequent hydrogenation with the Lindlar catalyst under hydrogen pressure to give 5. Via Route B 1-nonanal was coupled to methyl propiolate by n-BuLi with subsequent hydrogenation under reflux with the catalytic system Lindlar cat./NH4HCO2 to yield 5. These hydrogenations were also executed in a microwave oven resulting in better yields and/or reaction times. The lactone 5 was then epoxidized, the ring opened by amidation and the remaining alcohol was oxidized via Collins oxidation to result in tetrahydrocerulenin analogues 8a-e. The same procedure was used for dihydrocerulenin analogues 10a-c except that to obtain the corresponding lactone 9a only route A was used and a further step had to be executed for ring closure. To obtain analogues with all structural features of cerulenin including two double bonds and the epoxide function, a third pathway was chosen. To obtain the future side chain, aldehyde 12 was synthesized by coupling protected 4-pentyn-1-ol to either crotyl bromide or crotyl chloride, which then was deprotected, hydrogenated with Lindlar catalyst under hydrogen pressure and oxidized via a Swern oxidation. The following synthesis sequence starting from 12 was executed similar to that of dihydrocerulenins via the corresponding lactone (51) with the major exception of the oxidation procedure in the last step via TPAP/NMO to result in (4Z,7E)-cerulenin analogues 15a-b. A fourth class of cerulenin analogues was synthesized with the aromatic analogues 17a-e. This synthesis pathway started with the formation of the benzoyl acrylamides 16a-e from benzoylacrylic acid via a mixed anhydride which was prepared with isobutylchloroformate followed by the addition of the corresponding amine. Subsequent epoxidation with H2O2 in basic EtOH gave the aromatic cerulenin analogues 17a-e. Pharmacological testings for the synthesized substances were executed on efflux pump-resistant and -sensitive Candida albicans isolates, on the fatty acid synthesis enzyme KasA of Mycobacterium tuberculosis and on other organisms such as Leishmania major, Trypanosoma brucei brucei, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa within the Sonderforschungsbereich 630.}, subject = {Organische Synthese}, language = {en} } @phdthesis{Wehle2016, author = {Wehle, Sarah}, title = {In silico Studien zu Bis-Tacrinen, Chinazolinen und Chinazolinonen sowie Synthese von Chinazoliniumverbindungen als Inhibitoren von Cholinesterasen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die Alzheimer'sche Erkrankung wird derzeit durch die Gabe von Acetylcholinesterase- Inhibitoren (AChEI) symptomatisch behandelt. Durch die AChE-Hemmung steht mehr Acetylcholin (ACh) f{\"u}r die Neurotransmission zur Verf{\"u}gung. Bei Progression der Erkran-kung nimmt der Anteil an AChE drastisch ab, so dass die Enzymisoform Butyrylcholin- esterase (BChE) die Hydrolyse des Neurotransmitters ACh {\"u}bernimmt. In sp{\"a}ten Phasen der Alzheimer'schen Erkrankung ist daher der Einsatz selektiver BChE-Hemmer erfolgsver- sprechend. Inhibitoren k{\"o}nnen verschiedene Bindestellen in der Cholinesterase-Bindetasche adressie-ren und dadurch in dieser stabilisiert werden. Zu den Bindestellen z{\"a}hlen die katalytisch aktive Stelle (CAS) am Ende eines 20 {\AA} langen Bindetaschentunnels, die Oxyanion-Vertie-fung, die Cholinbindestelle, sowie die periphere anionische Bindestelle (PAS), welche am Bindetascheneingang lokalisiert ist. In der vorliegenden Arbeit wurden durch in silico Dockingstudien gezielt Protein-Ligand- Interaktionen untersucht, um Strukturmerkmale hochaffiner Inhibitoren von Cholinesterasen zu identifizieren. Damit soll die zuk{\"u}nftige Entwicklung von Cholinesteraseinhibitoren hinsichtlich der Affinit{\"a}t zum Enzym verbessert werden. Ferner dienten synthetische Untersuchungen eines Naturstoffes dazu, Chinazoliniumverbindungen als Leitstruktur f{\"u}r die Inhibition der Cholinesterasen zu etablieren. F{\"u}r hochaffine tri- und tetrazyklische aminsubstituierte AChE-selektive Chinazolin- und Chinazolinoninhibitoren sollte die bevorzugte Orientierung der Liganden in der Bindetasche ermittelt werden. Hierf{\"u}r ist die Lokalisation des Aminsubstituenten in der CAS (invertierter Bindemodus) oder die dortige Bindung des Chinazolin-/Chinazolinonger{\"u}stes (klassischer Bindemodus) denkbar. Anhand eines pr{\"a}ferierten einheitlichen Bindemodus sollten die Struktur-Aktivit{\"a}ts-Beziehungen erkl{\"a}rt werden. Dockingstudien zeigten die klare Pr{\"a}ferenz f{\"u}r den invertierten Bindemodus, bei dem der Aminsubstituent in der N{\"a}he der CAS platziert wird. Ein strukturelles Merkmal f{\"u}r hochaffine Inhibitoren ist ein unter Assaybedingungen protoniertes Amin, welches eine Kation-π-Wechselwirkung zu dem Indolringsystem des Tryptophans der Cholinbindestelle eingehen kann. F{\"u}r das Ligandengrundger{\"u}st wurde lediglich f{\"u}r tetrazyklische Verbindungen eine π-π-Interaktion mit der peripheren Bindestelle (PAS) am Bindetascheneingang identifiziert. Der Datensatz umfasste auch chirale Chinazolinon- und Chinazolinderivate mit hydrierter C=N-Doppelbindung, die eine schw{\"a}chere Affinit{\"a}t zu AChE zeigten. Diese ist vermutlich auf das nicht-planare Ligandengrundger{\"u}st zur{\"u}ckzuf{\"u}hren, da vor allem f{\"u}r tetrazyklische chi-rale Verbindungen die Stabilisierung des Ligandengrundger{\"u}stes durch π-π-Interaktionen am Bindetascheneingang aufgrund der Sterik entweder gar nicht, oder nur f{\"u}r ein Enantio-mer m{\"o}glich ist. Aufgrund der nanomolaren Affinit{\"a}t der achiralen Chinazolin- und Chinazolinonverbindungen wurden weitere gerichtete Wechselwirkungen in der Bindetasche erwartet. Derartige Wechselwirkungen konnten in Form von Wasserstoffbr{\"u}cken durch die Verwendung von sieben ausgew{\"a}hlten strukturellen Wassermolek{\"u}len im Docking identifiziert werden. Durch diese Wassermolek{\"u}le werden Wasserstoffbr{\"u}cken vom Ligandengrundger{\"u}st zum Protein vermittelt. Diese Wechselwirkungen scheinen essentiell f{\"u}r die Stabilisierung hoch-affiner Chinazolin- und Chinazolinoninhibitoren in der AChE-Bindetasche zu sein. Zwei photochrome Bis-Tacrin-Konstitutionsisomere (Ring-ge{\"o}ffnete und Ring-geschlossene Form) inhibieren die AChE und zeigen einen unterschiedlichen Effekt in der Hemmung der Amyloid-β Fibrillenbildung. Die Fibrillenbildung wird durch eine unbesetzte periphere Bindestelle (PAS) am Eingang der AChE-Bindetasche katalysiert, weshalb eine unterschiedliche Interaktion der Liganden mit ebendieser Bindestelle vermutet wird. Dockingstudien lieferten f{\"u}r beide Konstitutionsisomere einen {\"a}hnlichen Bindemodus, der vor dem Hintergrund der {\"a}hnlichen IC50-Werte von 4.3 und 1.8 nM f{\"u}r die Ring-ge{\"o}ffnete und Ring-geschlossene Form plausibel erscheint. Durch die Auswahl einer geeigneten R{\"o}ntgenstruktur wurden Dockingl{\"o}sungen erhalten, bei denen ein Tacrinsubstituent in der PAS bindet und dort π-π-Interaktionen mit einem Tryptophan und einem Tyrosin eingeht. Eine solche Lage des PAS-bindenden Tacrinsubstituenten ist energetisch bevorzugt und dr{\"u}ckt sich durch bessere Scores gegen{\"u}ber Dockingl{\"o}sungen, bei denen dieser auf der Protein-oberfl{\"a}che lokalisiert ist, aus. Der andere Tacrinsubstituent bindet in der CAS wie dies von bereits kristallisierten Tacrinderivaten bekannt ist. Mittels molekulardynamischer Simulati-onen wurde die Stabilit{\"a}t der Protein-Dockingl{\"o}sungs-Komplexe beider Konstitutionsiso-mere verglichen. Dabei wurde die bessere Stabilisierung des CAS-bindenden Tacrinsubsti-tuenten f{\"u}r die Ring-ge{\"o}ffnete Form des Liganden ermittelt. Ferner zeigt sich f{\"u}r die Ring-ge{\"o}ffnete Inhibitorform w{\"a}hrend der Simulation der Einstrom von sechs Wassermolek{\"u}len in einen Hohlraum der PAS. Dies hat zur Folge, dass der PAS-bindende Tacrinsubstituent w{\"a}hrend der H{\"a}lfte der Simulationszeit durch Wasserstoffbr{\"u}cken in der PAS stabilisiert wird. Ein Wasserstoffbr{\"u}ckennetzwerk diesen Ausmaßes kann f{\"u}r die Ring-geschlossene Inhibitorform nicht ermittelt werden. Die bessere Hemmung der Amyloid-β Fibrillenbildung der Ring-ge{\"o}ffneten Inhibitorform wird daher auf die bessere Stabilisierung des Liganden durch Wasserstoffbr{\"u}cken in der AChE-Bindetasche zur{\"u}ckgef{\"u}hrt. F{\"u}r carbamatsubstituierte Tetrahydrochinazolinverbindungen sollten die bevorzugten Interaktionen in der BChE-Bindetasche ermittelt werden. Die Carbamatverbindungen sind pseudo-irreversible Inhibitoren und zeigen eine zeitabh{\"a}ngige Hemmung mit diversen Interaktionszust{\"a}nden zwischen Protein und Ligand. Dar{\"u}ber hinaus stellen Dockingstudien in der BChE bislang eine Herausforderung dar, da es derzeit nur zwei R{\"o}ntgenstrukturen dieses Enzyms mit reversiblen Liganden gibt, weshalb kaum Studien zur Identifikation einer geeigneten Bewertungsfunktion durchgef{\"u}hrt werden k{\"o}nnen. Im Docking wurde sich f{\"u}r die Analyse des reversiblen Anlagerungskomplexes entschieden, da das Docking des tetraedrischen {\"U}bergangszustandes energetisch entartete Dockingl{\"o}sungen lieferte. Eine weitere Herausforderung stellte die Gr{\"o}ße der BChE-Bindetasche dar, die auch im reversiblen Docking entartete Dockingl{\"o}sungen lieferte. Aufgrund einer {\"a}hnlichen {\"U}bertragungsrate aller getesteten Inhibitoren wurde eine konservierte Lage des Carbamates in der Bindetasche angenommen. Deshalb wurde eine repr{\"a}sentative Dockingl{\"o}sung einer Referenzverbindung als Ausgangspose f{\"u}r einen Modelling-Ansatz gew{\"a}hlt, die hinsichtlich der Interaktionen in der Bindetasche ausgew{\"a}hlt wurde. Diese Interaktionen sind: 1) Eine Wasserstoffbr{\"u}ckendistanz zwischen der Carbamat-Carbonylgruppe und der Oxyanion-Vertiefung sowie 2) eine Distanz, die den nucleophilen Angriff des Serins auf den Carbamatkohlenstoff erlaubt. Im Modelling-Ansatz wurde die repr{\"a}sentative Bindepose dazu verwendet die entsprechenden Inhibitoren in der Bindetasche aufzubauen. Die bevorzugte Position der N-Methylgruppe wurde f{\"u}r beide Enantiomere {\"u}ber die berechneten Spannungsenergien der Bindeposen abgesch{\"a}tzt. F{\"u}r die S-Enantiomere ergab sich die pr{\"a}ferierte Bindung mit quasi-„axialer" Methlygruppe und f{\"u}r die R-Enantiomere mit quasi-„{\"a}quatorialer" Stellung dieser. Die Carbamatstrukturen liegen somit mit der Heptylkette in der Acyltasche und die Ligandengrundger{\"u}ste werden in einer Seitentasche der BChE-Bindetasche platziert, in der hydrophobe Wechselwirkungen dominieren. Zus{\"a}tzlich zu den hochaffinen Chinazolinonverbindungen sollten artverwandte Chinazolini-umverbindungen als Leitstruktur f{\"u}r Cholinesteraseinhibitoren untersucht werden. Zun{\"a}chst erfolgten Studien zur chemischen Reaktivit{\"a}t und Stabilit{\"a}t des Naturstoffes Dehydroevodiamin (DHED) sowie seines Benz-Derivates (Benz-DHED). Insbesondere Benz-DHED war unter den bisher verwendeten und in der Literatur beschriebenen Synthesemethoden instabil. Die Untersuchungen erforderten daher zun{\"a}chst die Einf{\"u}hrung einer geeigneten Syntheseroute, in diesem Fall die Oxidation mit KMnO4, einhergehend mit der Verbesserung der Ausbeute und ohne Nebenproduktbildung. F{\"u}r die zuk{\"u}nftige Synthese von Derivaten wurde die Verwendung einer geeigneten Lewis-S{\"a}ure-labilen Schutzgruppe herausgearbeitet. Die untersuchten Chinazoliniumverbindungen zeigen die Eigenschaft, dass sie in Abh{\"a}ngigkeit der Reaktionsbedingungen in zwei Formen (Ring-ge{\"o}ffnet und Ring-geschlossen = Chi-nazoliniumsalz) isoliert werden k{\"o}nnen. Mittels UV/Vis-Untersuchungen wurde das Gleich-gewicht dieser Spezies aufgekl{\"a}rt und in w{\"a}ssrigen alkalischen L{\"o}sungen die Anreicherung einer dritten, bislang nicht in diesem Zusammenhang beschriebenen, Spezies beobachtet. Als biologisch aktive Spezies konnte die Chinazoliniumform identifiziert werden. In Dockingstudien der Chinazoliniumform von Benz-DHED, nach dem f{\"u}r Carbamatverbindungen entwickelten Modelling-Ansatz, konnte auch hierf{\"u}r die Stabilisierung der Docking- l{\"o}sung {\"u}ber eine Wasserstoffbr{\"u}cke in der BChE-Bindetasche zu einem strukturellen Wassermolek{\"u}l identifiziert werden. Dies verdeutlicht erneut, dass die Ber{\"u}cksichtigung von Wassermolek{\"u}len in Dockingstudien dazu dienen kann zus{\"a}tzliche Protein-Ligand-Interaktionen festzustellen. Auf Grundlage der Forschung zu Chinazoliniumverbindungen kann die zuk{\"u}nftige Inhibitorentwicklung von Strukturen basierend auf dieser Substanzklasse erfolgen. Die durchgef{\"u}hrten synthetischen und theoretischen Studien liefern wichtige Beitr{\"a}ge zum Verst{\"a}ndnis der Wechselwirkungen zwischen Inhibitoren und Cholinesterasen, die in der zuk{\"u}nftigen Inhibitorentwicklung Anwendung finden k{\"o}nnen.}, subject = {Cholinesteraseinhibitor}, language = {de} } @phdthesis{Herb2011, author = {Herb, Monika}, title = {Synthese von Pyridin-, Pyridylessigs{\"a}ure- und Thiazol-Derivaten als potentielle Inhibitoren der SARS-CoV-Mpro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66495}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Einen m{\"o}glichen Ansatzpunkt f{\"u}r eine antivirale Therapie gegen SARS-Coronaviren bildet die Hemmung der Cysteinproteasen SARS-CoV-Mpro und SARS-CoV-PLpro. Diese {\"u}bernehmen die Polyprotein-Spaltung w{\"a}hrend der Virusreplikation und sind damit essentiell f{\"u}r das {\"U}berleben und die Verbreitung des Virus. Im Rahmen dieser Arbeit wurden potentielle Inhibitoren der SARS-CoV-Mpro synthetisiert, die Pyridin-, Piperidin-, Pyrrolidin-, Pyridylessigs{\"a}ure- und Thiazol-Derivate als Grundbausteine enthalten. Durch Strukturmodifikationen wurde eine Serie neuer Verbindungen erhalten, deren inhibitorische Aktivit{\"a}ten in fluorimetrischen Assays (FRET-Assays) an den Enzymen SARS-CoV-Mpro und SARS-CoV-PLpro untersucht wurden. Weiterhin wurden Testungen an Coronaviren, den Protozoen Leishmania major und Typanosoma brucei brucei und an Makrophagen durchgef{\"u}hrt. Die synthetisierten Verbindungen wurden in sechs Strukturklassen eingeteilt. Strukturklasse 1 enth{\"a}lt Pyridin-, Piperidin-, Pyrrolidin- und Pyridylessigs{\"a}ure-Derivate ohne Seitenkette in α-Position. Diese bestehen aus einem peptidischen Carbons{\"a}ure-Fragment mit N-Heterozyklus. Die Strukturklasse 2 bilden Pyridylessigs{\"a}ure-Derivate mit einer zus{\"a}tzlichen aliphatischen Seitenkette in α-Position zur Carboxylfunktion. Die Seitenkette sollte durch Adressierung der S1'- bzw. S2'-Bindetasche der SARS-CoV-Mpro die Affinit{\"a}t zum Enzym erh{\"o}hen. In den Strukturklassen 3 bis 6 bilden Thiazolamide das bestimmende Strukturelement. In der Strukturklasse 3 kamen dabei unterschiedlich substituierte aromatische Carbons{\"a}uren zum Einsatz, die mit einer Reihe 4,5-substituierter Thiazolamine verkn{\"u}pft wurden. In den {\"u}brigen Stoffklassen, in denen ausschließlich 5-Acetyl-4-methylthiazolamin als Amin-Fragment diente, wurde der Einfluss von S{\"a}ure-Bausteinen ohne Michael-System (Strukturklasse 4) bzw. mit Michael-System (Strukturklasse 5), sowie die Einf{\"u}hrung einer Seitenkette am Benzolring oder am Michael-System (Strukturklasse 6) untersucht. Bei den durchgef{\"u}hrten Enzymassays an der SARS-CoV-Mpro zeigten die synthetisierten Verbindungen insgesamt nur eine geringe Hemmung der Protease (<30 \%, 20 µM). Daher lassen sich aus den erhaltenen Ergebnissen keine Struktur-Wirkungsbeziehungen ableiten. Dennoch sind in den Ergebnissen Trends erkennbar. Alle aktiven Verbindungen (Hemmung >10 \% bei 20 μM) der Pyridin-, Pyrrolidin-, Piperidin- und Pyridylessigs{\"a}ure-Derivate enthielten als Strukturmerkmal gr{\"o}ßere Seitenketten wie n-Pentyl, Cyclopropylmethyl und Crotyl (Strukturklasse 2). Bei den Thiazolamiden der Strukturklassen 3-6 f{\"u}hrte die Einf{\"u}hrung eines Michael-Systems in der Strukturklasse 5 zu etwas aktiveren Verbindungen. Den gr{\"o}ßten Einfluss auf die Aktivit{\"a}t zeigte jedoch die Einf{\"u}hrung einer Seitenkette in α-Postion zur Carboxylgruppe (Strukturklasse 6). In den Strukturklassen 3 und 4 erwiesen sich nur sehr wenige Verbindungen als aktiv.}, subject = {Coronaviren}, language = {de} } @phdthesis{Schneider2011, author = {Schneider, Thomas}, title = {Synthese von reversiblen und kovalent-reversiblen Cysteinprotease-Inhibitoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67491}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Als Vorlage f{\"u}r diese Inhibitoren diente der kovalent gebundene Inhibitor 9IN aus der Kristallstruktur 2AMD. Die Entwicklung der neuen Leitstruktur (Abbildung 7-1) erfolgte dabei durch Fragmentierung mit dem Programm FRED im Arbeitskreis Prof. Knut Baumann (Univ. Braunschweig). Die dargestellten Verbindungen wurden als nicht-kovalent gebundene Inhibitoren entwickelt und sowohl an SARS-CoV-Mpro als auch an SARSCoV-PLpro getestet. Da die Basisverbindung 34j (R = H) in durchgef{\"u}hrten Dockingstudien die Enzym-Bindetaschen S1, S2 und S4 bereits ausreichend besetzt hatte, war das Ziel v.a. die noch freie Bindetasche S1' mit eingef{\"u}gten Resten R zu besetzen. Dazu wurden in der Reihe 34a-t verschiedene Alkylreste eingef{\"u}gt. Die Verbindungen 37a-cc bzw. 38a-p besitzen hingegen die Reste C(O)NHR, CO2R, CH2C(O)NHR und CH2CO2R. Im Verlauf der Synthese wurde der teure Baustein 4-Methylcyclohexancarbons{\"a}ure durch die g{\"u}nstigere Verbindung Cyclohexancarbons{\"a}ure ersetzt. Keine der dargestellten Verbindungen wies eine besondere Hemmung auf. Trotz geringer Hemmung konnte Verbindung 34e mit dem Enzym SARS-CoV-Mpro co-kristallisiert werden. Die genaue Lage des Inhibitors in der Bindetasche ist bislang noch nicht eindeutig gekl{\"a}rt. Der zweite Teil der vorliegenden Arbeit besch{\"a}ftigt sich mit der Entwicklung von kovalent-reversiblen Inhibitoren von Cysteinproteasen auf Grundlage von Vinylsulfonen. Bisherige bekannte Vinylsulfone reagieren wie ein Michaelsystem in einer irreversiblen Addition. Es wurden durch QM-Rechnungen in der Arbeitsgruppe Prof. Bernd Engels substituierte Vinylsulfone vorgeschlagen, die f{\"a}hig sein sollten, mit Cysteinproteasen eine kovalent-reversible Bindung eingehen zu k{\"o}nnen. Durch die Wahl sowohl eines geeigneten Substituenten als auch einer geeigneten Abgangsgruppe sollte die Reaktion reversibel sein, wenn sie thermoneutral bis schwach endergon verl{\"a}uft. Um diese Berechnungen zu best{\"a}tigen, wurden die dargestellten Verbindungen mit einem {\"U}berschuss 2-Phenylethanthiol umgesetzt und der Reaktionsverlauf durch NMR-Spektroskopie verfolgt. Dabei konnte die Einstellung eines Gleichgewichts und damit auch die Reversibilit{\"a}t der Reaktion beobachtet werden. Aus den berechneten Gleichgewichtskonstanten konnten die freien Reaktionsenergien ΔG berechnet werden. Die Ergebnisse zeigen, dass die Reaktionen nahezu thermoneutral verlaufen und best{\"a}tigen damit die QM-Berechnungen.}, subject = {Coronaviren}, language = {de} } @phdthesis{Schramm2018, author = {Schramm, Simon}, title = {Synthesis of Dualsteric Muscarinic M\(_1\) Acetylcholine Receptor Ligands and Neuroprotective Esters of Silibinin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173592}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Alzheimer's disease is a complex network of several pathological hallmarks. These characteristics always occur concomitantly and cannot be taken as distinct features of the disease. While there are hypotheses trying to explain the origin and progression of the illness, none of them is able to pinpoint a definitive cause. This fact challenges researchers not to focus on one individual hallmark but, bearing in mind the big picture, target two or more indications at once. This work, therefore, addresses two of the major characteristics of AD: the cholinergic hypothesis and neurotoxic oxidative stress. The former was achieved by targeting the postsynaptic muscarinic M1 acetylcholine receptor to further investigate its pharmacology, and the latter with the synthesis of neuroprotective natural antioxidant hybrids. The first aim was the design and synthesis of dualsteric agonists of the muscarinic M1 acetylcholine receptor. Activation of this receptor was previously shown to improve AD pathologies like the formation of Aβ and NFTs and protect against oxidative stress and caspase activation. Selectively targeting the M1 receptor is difficult as subtypes M1 - M5 of the muscarinic AChRs largely share the same orthosteric binding pocket. Orthosteric ligands are thus unsuitable for selective activation of one specific subtype. Secondary, allosteric binding sites are more diverse between subtypes. Allosteric ligands are, however, in most cases dependent on an orthosteric ligand to cause downstream signals. Dualsteric ligands thus utilize the characteristics of both orthosteric and allosteric ligands in form of a message-address concept. Bridged by an alkylene-linker, the allosteric part ensures selectivity, whereas the orthosteric moiety initiates receptor activation. Two sets of compounds were synthesised in this sense. In both cases, the orthosteric ligand carbachol is connected to an allosteric ligand via linkers of different chain length. The first set utilizes the selective allosteric M1 agonist TBPB, the second set employs the selective M1 positive allosteric modulator BQCA. Six compounds were obtained in twelve-step syntheses each. For each one, a reference compound lacking the carbachol moiety was synthesised. The dualsteric ligands 1a-c and 2a c were tested in the IP1 assay. The assay revealed that the TBPB-dualsterics 1 are not able to activate the receptor, whereas the respective TBPB-alkyl reference compounds 27 gave signals depending on the length of the alkylene-linker, suggesting allosteric partial agonism of alkyl compounds 27 and no dualsteric binding of the putatively dualsteric compounds 1. The dualsteric BQCA molecules 2, however, activated the receptor as expected. Efficacy of the C5 linked compound 2b was the highest, yet C3 and C8 compounds (2a and 2c) also showed partial agonism. In this case, the reference compounds 31 showed no receptor activation, implying the intended dualsteric binding mode of the BQCA-carbachol compounds 2. Further investigations will be conducted by the working group of Dr. Christian Tr{\"a}nkle at the Department of Pharmacology at the University of Bonn to confirm binding modes and determine affinities as well as selectivity of the synthesised dualsteric compounds. The second project dealt with the design, synthesis and biological evaluation of neuroprotective esters of the flavonolignan silibinin. While silibinin is already a potent antioxidant, it has been observed that the 7-OH group has a pro-oxidative character, making this position attractive for functionalisation. In order to obtain more potent antioxidants, the pro-oxidative position was esterified with other antioxidant moieties like ferulic acid 35 and derivatives thereof. Seventeen esters of silibinin 32, including pure diastereomers of 7 O feruloylsilibinin (43a and 43b) and a cinnamic acid ester of 2,3-dehydrosilibinin 46, were synthesised by regioselective esterification using acyl chlorides under basic conditions. The physicochemical antioxidant properties were assessed in the FRAP assay. This assay revealed no improvement of the antioxidant properties except for 7-O-dihydrosinapinoylsilibinin 39b. These results, however, do not correlate with the neuroprotective properties determined in the HT-22 hippocampal neuronal cell model. The assay showed overadditive neuroprotective effects of the esters exceeding those of its components and equimolar mixtures with the most potent compounds being 7-O-cinnamoylsilibinin 37a, 7-O-feruloylsilibinin 38a and the acetonide-protected caffeic acid ester 40a. These potent Michael system bearing compounds may be considered as "PAINS", but the assays used to assess antioxidant and neuroprotective activities were carefully chosen to avoid false positive readouts. The most potent compounds 37a and 38a, as well as the diastereomers 43a and 43b, were further studied in assays related to AD. In vitro ischemia, inhibition of microglial activation, PC12 cell differentiation and inhibition of Aβ42 and τ protein aggregation assays showed similar results in terms of overadditive effects of the synthesised esters. Moreover, the diastereomers 43a and 43b showed differences in their activities against oxytosis (glutamate-induced apoptosis), inhibition of Aβ42 and τ protein aggregation, and PC12 cell differentiation. The stereospecific effect or mode of action against Aβ42 and τ protein aggregation is more pronounced than that of silybin A (32a) and silybin B (32b) reported in literature and needs to be elucidated in future work. Stability measurements in cell culture medium revealed that the esters do not only get hydrolysed but are partially oxidised to their respective 2,3-dehydrosilibinin esters. Because dehydrosilibinin 45 itself is described as a more potent antioxidant than silibinin 32, 7 O cinnamoyl-2,3-dehydrosilibinin 46 was expected to be even more potent than its un-oxidised counterpart 37a in terms of neuroprotection. The oxytosis assay, however, showed that the neurotoxicity of 46 is much more pronounced, especially at higher concentrations, reducing its neuroprotective potential. Dehydrosilibinin esters are therefore inferior to the silibinin esters for application as neuroprotectants, because of the difficulty of their synthesis and their increased neurotoxicity. A synergistic effect of both species (silibinin and the oxidised form) might, however, be possible or even necessary for the pronounced neuroprotective effects of silibinin esters. As the dehydro-species show distinct neuroprotective properties at low concentrations, their continuous formation over time might make an essential contribution to the overall neuroprotection of the synthesised esters. Due to solubility issues for some of the ester compounds, 7-O-cinnamoylsilibinin 37a was converted into a highly soluble hemisuccinate. The vastly improved solubility of 7 O cinnamoyl-23-O-succinylsilibinin 48 was confirmed in shake-flask experiments. Contrary to expectation, stability examinations showed that the succinyl compound 48 is not cleaved to form 7-O-cinnamoylsilibinin 37a. Neuroprotection assays confirmed that 48 is not a prodrug of the corresponding ester. It was determined that the main site of hydrolysis is the 7-position, cleaving 37 to silibinin 32 and cinnamic acid thus reducing the compound's neuroprotective effects. Nevertheless, the compound still showed neuroprotection at a concentration of 25 µM. The improved solubility might be more beneficial than the higher neuroprotection of the poorly soluble parent compound 37a in vivo. 7 O Cinnamoylsilibinin 37a was further investigated to reduce Aβ25 35 induced learning impairment in mice. While tendencies of improved short-term and long-term memory in the animals were observed, the effects are not yet statistically significant in both Y-maze and passive avoidance tests. A greater number of test subjects is necessary to ensure correctness of the preliminary results presented in this work. However, an effect of ester 37a is observable in vivo, showing blood-brain barrier penetration. The esters synthesised are a novel approach for the treatment of AD as they show strong neuroprotective effects and their hydrolysis products or metabolites are only non-toxic natural products.}, subject = {Organische Synthese}, language = {en} } @phdthesis{Hofmann2023, author = {Hofmann, Julian}, title = {Synthesis of Sterubin, Flavonoid Hybrids, and Curcumin Bioisosteres and Characterization of their Neuroprotective Effects}, doi = {10.25972/OPUS-26664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Alzheimer´s disease (AD) is a neurodegenerative disease and the most common form of dementia with still no preventive or curative treatment. Besides several risk factors, age is one of the major risks for AD and with an aging society, there is an urgent need for disease modifying agents. The strategy to address only one target within the intertwined network of AD failed so far. Natural products especially the phytochemical flavonoids, which are poly-phenolic natural products, have shown great potential as disease modifying agents against neurodegenerative disorders like Alzheimer´s disease (AD) with activities even in vivo. Flavonoids are produced by many plants and the native Californian plant Eriodictyon californicum is particularly rich in flavonoids. One of the major flavonoids of E. californicum is sterubin, a very potent agent against oxidative stress and inflammation, two hallmarks and drivers of AD and neurodegeneration. Herein, racemic sterubin was synthesized and separated into its pure (R)- and (S)-enantiomer by chiral HPLC. The pure enantiomers showed comparable neuroprotection in vitro with no significant differences. The stereoisomers were configurationally stable in methanol, but fast racemization was observed in culture medium. Moreover, the activity of sterubin was investigated in vivo, in an AD mouse model. Sterubin showed a significant positive impact on short- and long-term memory at low dosages. A promising concept for the increase of activity of single flavonoids is hybridization with aromatic acids like cinnamic or ferulic acids. Hybridization of the natural products taxifolin and silibinin with cinnamic acid led to an overadditive effect of these compounds in phenotypic screening assays related to neurodegeneration and AD. Because there are more potent agents as taxifolin or silibinin, the hybrids were further developed, and different flavonoid cinnamic acid hybrids were synthesized. The connection between flavonoids and cinnamic acid was achieved by an amide instead of a labile ester to improve the stability towards hydrolysis to gain better "druggability" of the compounds. To investigate the oxidation state of the C-ring of the flavonoid part, the dehydro analogues of the respective hybrids were also synthesized. The compounds show neuroprotection against oxytosis, ferroptosis and ATP-depletion in the murine hippocampal cell line HT22. While no overall trend within the flavanones compared to the flavones could be assigned, the taxifolin and the quercetin derivative were the most active compounds in course of all assays. The quercetin derivate even shows greater activity than the taxifolin derivate in every assay. As desired no hydrolysis product was found in cellular uptake experiments after 4h, whereas different metabolites were found. The last part of this work focused on synthetic bioisoteres of the natural product curcumin. Due to the drawbacks of curcumin and flavonoids arising from poor pharmacokinetics, rapid metabolism and sometimes instability in aqueous medium, we have examined the biological activity of azobenzene compounds designed as bioisoteres of curcumin, carrying the pharmacophoric catechol group of flavonoids. These bioisosteres exceeded their parent compounds in counteracting intracellular oxidative stress, neuroinflammation and amyloid-beta aggregation. By incorporating an azobenzene moiety and the isosteric behaviour to the natural parent compounds, these compounds may act as molecular tools for further investigation towards the molecular mode of action of natural products.}, subject = {Organische Synthese}, language = {en} }