@phdthesis{Bernardi2005, author = {Bernardi, Tina Sibylla}, title = {Die Rolle des Zytoskeletts f{\"u}r die Replikation des Masernvirus - insbesondere seiner Komponenten Aktin und Tubulin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {F{\"u}r die Replikation des Masernvirus wird den Komponenten des Zytoskeletts eine wichtige Rolle zugeschrieben. Die vorliegende Arbeit zeigt, dass Aktin in polymerisierter Form vorliegen muss, um das Budding zu erm{\"o}glichen. Die Beeinflussung der ersten Schritte des Replikationszyklus konnte f{\"u}r Aktin, vor allem aber f{\"u}r Tubulin nachgewiesen werden, so dass ein Transport des viralen Genoms zum Ort seiner Replikation entlang der Mikrotubuli m{\"o}glich w{\"a}re.}, language = {de} } @phdthesis{Gliem2011, author = {Gliem, Martin}, title = {Die Rolle des Zytoskeletts in der Pathogenese des Pemphigus vulgaris}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74052}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Pemphigus vulgaris (PV) ist eine blasenbildende Autoimmunerkrankung der Haut. Ein wesentliches Charakteristikum der Erkrankung sind Autoantik{\"o}rper, welche gegen die humanen Zell-Adh{\"a}sionsmolek{\"u}le Desmoglein (Dsg) 3 und 1 gerichtet sind und zu zunehmender Zell-Dissoziation der Keratinozyten f{\"u}hren (Akantholyse). Neben der Dsg3-Reorganisation sind zytoskelettale Ver{\"a}nderungen in Form einer ZK-Retraktion und einer Reorganisation des Actin-Zytoskeletts als ein wichtiges Merkmal akantholytischer Zellen beschrieben worden. Dennoch ist der zeitliche Verlauf und die funktionelle Relevanz dieser zytoskelettalen Ver{\"a}nderungen im Vergleich zu anderen Prozessen, wie der Dsg3-Reorganisation oder der Zell-Dissoziation, unklar. In dieser Arbeit wurde daher die Rolle der ZK-Filamente und der Actinfilamente f{\"u}r die PV-Pathogenese untersucht. Inkubation von kultivierten Keratinozyten mit PV-IgG resultierte in einer ZK-Retraktion, welche eng mit dem Beginn der Dsg3-Reorganisation und der Zell-Dissoziation korrelierte. Weiterhin fand sich eine Abh{\"a}ngigkeit der PV-IgG-induzierten ZK-Retraktion und der Zell-Dissoziation von der p38MAPK-Signalkaskade, w{\"a}hrend die Beteiligung der p38MAPK an der Dsg3-Reorganisation von untergeordneter Rolle zu sein scheint. {\"U}bereinstimmend dazu f{\"u}hrte eine {\"U}berexpression von E-Cadherin zu einer Hemmung der p38MAPK-Aktivierung, der ZK-Retraktion und der Zell-Dissoziation, so dass den Cadherinen eine {\"u}bergeordnete Rolle in der Vermittlung der PV-Pathogenese zuzukommen scheint. Neben einer ZK-Retraktion zeigten die Zellen als Reaktion auf eine Inkubation mit PV-IgG auch wesentliche Reorganisationen der Actinfilamente, welche ebenfalls eng mit der Dsg3-Reorganisation und der Zell-Dissoziation korrelierten. Dar{\"u}ber hinaus interferierte die pharmakologische Modulation des Actin-Zytoskeletts mit den PV-IgG-Effekten. So f{\"u}hrte eine Stabilisierung der Actinfilamente zu einer Reduktion sowohl der Dsg3-Reorganisation als auch der Zell-Dissoziation, w{\"a}hrend eine Zerst{\"o}rung der Filamente die Effekte verst{\"a}rkte. Zur Unterst{\"u}tzung dieser Ergebnisse wurde die Rolle des Actins f{\"u}r die durch Rho-GTPasen vermittelte Hemmung von PV-IgG-Effekten untersucht. Eine Aktivierung der Rho-GTPasen f{\"u}hrte neben einer Hemmung PV-IgG-vermittelter Effekte auch zu einer Verst{\"a}rkung des kortikalen Actin-Rings, w{\"a}hrend eine Hemmung der Actin-Polymerisation die protektiven Effekte der Rho-GTPasen-Aktivierung aufheben konnte. Zusammenfassend l{\"a}sst sich sagen, dass die Ergebnisse dieser Arbeit eine {\"u}bergeordnete Rolle sowohl der desmosomalen als auch der klassischen Cadherine f{\"u}r die PV-Pathogenese zeigen. Daneben scheint auch der Actin-Reorganisation eine wesentliche Position zuzukommen. Die ZK-Retraktion hingegen scheint, zumindest im Bezug auf die Dsg3-Reorganisation, sekund{\"a}r zu sein, tr{\"a}gt aber m{\"o}glicherweise im Anschluss an eine p38MAPK-Aktivierung wesentlich zum Verlust der Zell-Zell-Adh{\"a}sion bei.}, subject = {Pemphigus}, language = {de} } @phdthesis{Otto2001, author = {Otto, Ines Maria}, title = {Klonierung und funktionelle Analyse des Aktinreorganisators p150-Spir}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1178402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Die c-Jun-N-terminale Kinase (JNK), ein Mitglied der Familie der MAP-Kinasen (Mi-togen Activated Protein Kinases), wirkt als signal{\"u}bertragender Effektor, der den klei-nen GTPasen der Rho-Familie Rac und Cdc42 nachgeschaltet ist. Rho-GTPasen spielen eine Schl{\"u}sselrolle in der Regulation von zellul{\"a}ren Aktinstrukturen und steuern Prozesse in der Zelle, die {\"A}nderungen der Aktinstruktur erfordern, wie z.B. {\"A}nderungen der Zellmorphologie, Zellmigration, Wachstum und Differenzierung. Genetische Studien an der Fruchtfliege Drosophila melanogaster konnten eine Rolle des Drosophila-JNK-Homologs DJNK(basket) in der Regulation von Zellbewegungen und Zellmorphologie{\"a}nderungen w{\"a}hrend der Drosophila-Embryogenese zeigen. Inhibierung der Funktion von DJNK auf allen Stufen der DJNK-Signaltransduktions-kaskade f{\"u}hrt zum sogenannten dorsal closure-Ph{\"a}notyp der Embryonen mit fehlender Zellstreckung und fehlender Migration dorsaler Epithelzellen. Der molekulare Mechanismus, mit dessen Hilfe Rho-GTPasen Aktinstrukturen regu-lieren und wie JNK Einfluss auf Zellmorphologie und Zellbewegung nimmt, ist bisher nicht bekannt. Die Identifizierung neuer, mit JNK interagierender Proteine k{\"o}nnte zum besseren Verst{\"a}ndnis der Funktion und Regulation von JNK f{\"u}hren. In dieser Arbeit wurde ein Yeast-Two-Hybrid-Screen mit dem Drosophila-Homolog DJNK/basket durchgef{\"u}hrt, der zur Entdeckung des Drosophila-Proteins p150-Spir als Interaktionspartner von DJNK f{\"u}hrte. Der C-terminus des p150-Spir-Proteins enth{\"a}lt eine JNK-Interaktionsdom{\"a}ne, ein DEJL-Motiv (Docking Site for Erk and JNK, LxL) und wird von aktivierten JNK-Proteinkinasen phosphoryliert. p150-Spir ist ein Multi-Dom{\"a}nen-Protein, das in seiner aminoterminalen H{\"a}lfte eine Aufeinanderfolge von vier WH2-Dom{\"a}nen (Wiskott Aldrich Homology Domain 2) enth{\"a}lt. WH2-Dom{\"a}nen binden monomeres Aktin, Proteine mit WH2 Dom{\"a}nen, wie z.B. WASP oder WAVE sind Aktinreorganisatoren. Die transiente {\"U}berexpression von p150-Spir in NIH3T3-Mausfibroblasten f{\"u}hrt ebenfalls zu einer Aktinreorganisation. Eine weitere Dom{\"a}ne in p150-Spir ist eine modifizierte FYVE-Zinkfinger-Struktur (mFYVE) im zentralen Bereich des Proteins, die f{\"u}r die subzellul{\"a}re Lokalisation von p150-Spir von Bedeutung ist. Mutationen, welche die Zinkfingerstruktur zerst{\"o}ren, f{\"u}hren bei {\"U}berexpression in NIH3T3-Zellen zu einer zytoplasmatischen Lokalisation der mutierten p150-Spir-Proteine, w{\"a}hrend Wildtyp-p150-Spir perinukle{\"a}r akkumuliert. Spir-Proteine sind evolution{\"a}r hoch konserviert. Es konnten Spir-{\"a}hnliche Sequenzen auf den humanen Chromosomen 16 und 18, in der Maus und in der Seescheide Ciona savignyi gefunden werden. Der h{\"o}chste Grad an Konservierung besteht im Bereich der funktionellen Proteindom{\"a}nen. Ein in allen Spir-Proteinen ent-haltenes, als Spir-Box bezeichnetes hoch konserviertes Sequenzmotiv befindet sich unmittelbar vor dem mFYVE-Zinkfinger. Die Spir-Box zeigt Strukturverwandschaft zur Rab-GTPase-Bindungsregion in Rabphilin 3A, einem Protein, das ebenfalls eine FYVE-Dom{\"a}ne besitzt. Rab-GTPasen sind wie FYVE-Dom{\"a}nenproteine in die Regulation zellul{\"a}rer Vesikeltransportprozesse involviert. Das Vorhandensein beider Do-m{\"a}nen in p150-Spir deutet auf eine Rolle des Proteins in zellul{\"a}ren Transportprozes-sen hin. Ein denkbares Modell w{\"a}re, daß p150-Spir unter der Kontrolle von JNK-Signalen zellul{\"a}re Aktinstrukturen reguliert, die f{\"u}r Transportprozessse in der Zelle von Bedeutung sind; p150-Spir fungiert damit m{\"o}glicherweise als direktes Bindeglied zwischen MAPK-Signaltransduktionskaskaden und dem Aktinzytoskelett.}, subject = {Taufliege}, language = {de} } @phdthesis{Mueller2006, author = {M{\"u}ller, Nora}, title = {Masern Virus Interferenz mit T-Zell-Aktivierung : Einfluß auf Zytoskelettdynamik, Mobilit{\"a}t und Interaktion mit Dendritischen Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17953}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Der Kontakt humaner T-Zellen mit dem MV Glykoproteinkomplex interferiert mit der CD3/CD28 stimulierten Aktivierung von PI3/Akt-Kinase Signalwegen. Damit verbunden ist der ineffiziente Transport PH-Dom{\"a}nen-enthaltender Proteine in Membran-rafts, wie der Akt-Kinase und Vav, den Guaninnukleotid-Austauschfaktor von Rho GTPasen. Es konnte gezeigt werden, dass infolge des MV-Kontaktes die CD3/CD28 stimulierte Aktivit{\"a}t der Rho GTPasen Cdc42 und Rac1 inhibiert ist. Dagegen war in MV-behandelten Zellen eine leichte RhoA Aktivierung festzustellen. Rho GTPasen spielen eine kritische Rolle in der Regulation von Zytoskelettorganisation von T-Lymphozyten. {\"U}bereinstimmend damit wurde gezeigt, dass der Kontakt mit MV die CD3/CD28 costimulierte Aktivierung und Polymerisation des F-Aktins inhibiert. Damit verbunden ist die reduzierte F{\"a}higkeit MV-behandelter T-Zellen auf Fibronektin- und mit CD3/CD28 Antik{\"o}rpern-beschichteten Objekttr{\"a}gern zu polarisieren. Die Ausbildung F-Aktin-getriebener morphologischer Ver{\"a}nderungen, wie Filopodien, Lamellipodien und Uropodien, ist drastisch reduziert. Rasterelektronenmikroskopische Auf-nahmen zeigten in nicht-stimulierten und CD3/CD28 costimulierten MV-behandelten T-Zellen einen nahezu kompletten Verlust an Mikrovilli und Lamellipodien. Die Bindung von MV induziert die Dephosphorylierung des F-Aktin-bindenden Proteins Cofilin und der ERM-Proteine. Es konnte demonstriert werden, dass der MV-Kontakt die Ausbildung einer reifen immunologischen Synapse st{\"o}rt. Trotz der morphologischen Ver{\"a}nderungen konjugieren MV-behandelte T-Zellen mit DCs. Die Anzahl MV-behandelter T-Zellen, die mit DCs inter-agieren, ist vergleichbar mit der mock-behandelter T-Zellen. Allerdings zeigt die 3-dimensionale Rekonstruktion der DC/T-Zell-Kontaktzone, dass in MV-behandelten T-Zellen die zentrale Akkumulation und Clusterbildung des CD3-Molek{\"u}ls gest{\"o}rt ist und keine monozentrische Synapse ausbildet wird. Desweiteren erfolgt die Relokalisation des MTOC in T-Zellen in Richtung der DC unvollst{\"a}ndig. Zusammenfassend kann gesagt werden, dass der MV Glykoproteinkomplex mit essentiellen Schritten einer erfolgreichen T-Zell-Aktivierung w{\"a}hrend der APC/T-Zell-Interaktion interferiert.}, subject = {Masernvirus}, language = {de} } @phdthesis{Beland2002, author = {Beland, Heidi}, title = {Molekulare Charakterisierung eines Tropomodulin-Homologen des Fuchsbandwurms E. multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6168}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Zusammenfassend konnte im Rahmen dieser Arbeit erstmals ein Tropomodulin- homologer Faktor aus einem Plathelminthen auf molekularer Ebene charakterisiert werden. Zudem wurde die Interaktion des kodierten Faktors mit einem k{\"u}rzlich isolierten Tropomyosin- Homologen aus E. multilocularis nachgewiesen. Basierend auf diesen Daten ist es nun m{\"o}glich, die biologische Signifikanz der Interaktion von Elp mit EmTY weiterf{\"u}hrend zu untersuchen. Sollte sich in diesen Studien herausstellen, daß der ERM- Faktor Elp in der Tat mit dem Tropomodulin- Tropomyosin- System der E. multilocularis- Zelle interferiert, k{\"o}nnte dies ein wichtiger Beitrag zu unserem Verst{\"a}ndnis des signaltransduktorischen Geschehens zwischen der Plasmamembran und dem Zytoskelett bei E. multilocularis sein.}, language = {de} } @phdthesis{Schwebs2024, author = {Schwebs, Marie}, title = {Structure and dynamics of the plasma membrane: a single-molecule study in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-27569}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275699}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The unicellular, flagellated parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and nagana in livestock. In the last decades, it has become an established eukaryotic model organism in the field of biology, as well as in the interdisciplinary field of biophysics. For instance, the dense variant surface glycoprotein (VSG) coat offers the possibility to study the dynamics of GPI-anchored proteins in the plasma membrane of living cells. The fluidity of the VSG coat is not only an interesting object of study for its own sake, but is critically important for the survival of the parasite in the mammalian host. In order to maintain the integrity of the coat, the entire VSG coat is recycled within a few minutes. This is surprisingly fast for a purely diffusive process with the flagellar pocket (FP) as the sole site for endo- and exocytosis. Previous studies characterising VSG dynamics using FRAP reported diffusion coefficients that were not sufficient to to enable fast turnover based on passive VSG randomisation on the trypanosome surface. In this thesis, live-cell single-molecule fluorescence microscopy (SMFM) was employed to elucidate whether VSG diffusion coefficients were priorly underestimated or whether directed forces could be involved to bias VSGs towards the entrance of the FP. Embedding the highly motile trypanosomes in thermo-stable hydrogels facilitated the investigation of VSG dynamics on living trypanosomes at the mammalian host's temperature of 37°C. To allow for a spatial correlation of the VSG dynamics to the FP entrance, a cell line was employed harbouring a fluorescently labelled structure as a reference. Sequential two-colour SMFM was then established to allow for recording and registration of the dynamic and static single-molecule information. In order to characterise VSG dynamics, an algorithm to obtain reliable information from short trajectories was adapted (shortTrAn). It allowed for the quantification of the local dynamics in two distinct scenarios: diffusion and directed motion. The adaptation of the algorithm to the VSG data sets required the introduction of an additional projection filter. The algorithm was further extended to take into account the localisation errors inherent to single-particle tracking. The results of the quantification of diffusion and directed motion were presented in maps of the trypanosome surface, including an outline generated from a super-resolved static structure as a reference. Information on diffusion was displayed in one map, an ellipse plot. The colour code represented the local diffusion coefficient, while the shape of the ellipses provided an indication of the diffusion behaviour (aniso- or isotropic diffusion). The eccentricity of the ellipses was used to quantify deviations from isotropic diffusion. Information on directed motion was shown in three maps: A velocity map, representing the amplitude of the local velocities in a colour code. A quiver plot, illustrating the orientation of directed motion, and a third map which indicated the relative standard error of the local velocities colour-coded. Finally, a guideline based on random walk simulations was used to identify which of the two motion scenarios dominated locally. Application of the guideline to the VSG dynamics analysed by shortTrAn yielded supermaps that showed the locally dominant motion mode colour-coded. I found that VSG dynamics are dominated by diffusion, but several times faster than previously determined. The diffusion behaviour was additionally characterised by spatial heterogeneity. Moreover, isolated regions exhibiting the characteristics of round and elongated traps were observed on the cell surface. Additionally, VSG dynamics were studied with respect to the entrance of the FP. VSG dynamics in this region displayed similar characteristics compared to the remainder of the cell surface and forces biasing VSGs into the FP were not found. Furthermore, I investigated a potential interference of the attachment of the cytoskeleton to the plasma membrane with the dynamics of VSGs which are anchored to the outer leaflet of the membrane. Preliminary experiments were conducted on osmotically swollen trypanosomes and trypanosomes depleted for a microtubule-associated protein anchoring the subpellicular microtubule cytoskeleton to the plasma membrane. The measurements revealed a trend that detachment of the cytoskeleton could be associated with a reduction in the VSG diffusion coefficient and a loss of elongated traps. The latter could be an indication that these isolated regions were caused by underlying structures associated with the cytoskeleton. The measurements on cells with an intact cytoskeleton were complemented by random walk simulations of VSG dynamics with the newly determined diffusion coefficient on long time scales not accessible in experiments. Simulations showed that passive VSG randomisation is fast enough to allow for a turnover of the full VSG coat within a few minutes. According to an estimate based on the known rate of endocytosis and the newly determined VSG diffusion coefficient, the majority of exocytosed VSGs could escape from the FP to the cell surface without being immediately re-endocytosed.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{Stritt2017, author = {Stritt, Simon}, title = {The role of the cytoskeleton in platelet production and the pathogenesis of platelet disorders in humans and mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Platelets are continuously produced from megakaryocytes (MK) in the bone marrow by a cytoskeleton-driven process of which the molecular regulation is not fully understood. As revealed in this thesis, MK/ platelet-specific Profilin1 (Pfn1) deficiency results in micro- thrombocytopenia, a hallmark of the Wiskott-Aldrich syndrome (WAS) in humans, due to accelerated platelet turnover and premature platelet release into the bone marrow. Both Pfn1-deficient mouse platelets and platelets isolated from WAS patients contained abnormally organized and hyper-stable microtubules. These results reveal an unexpected function of Pfn1 as a regulator of microtubule organization and point to a previously unrecognized mechanism underlying the platelet formation defect in WAS patients. In contrast, Twinfilin2a (Twf2a) was established as a central regulator of platelet reactivity and turnover. Twf2a-deficient mice revealed an age-dependent macrothrombocytopenia that could be explained by a markedly decreased platelet half-life, likely due to the pronounced hyper-reactivity of \(Twf2a^{-/-}\) platelets. The latter was characterized by sustained integrin acti- vation and thrombin generation in vitro that translated into accelerated thrombus formation in vivo. To further elucidate mechanisms of integrin activation, Rap1-GTP-interacting adaptor molecule (RIAM)-null mice were generated. Despite the proposed critical role of RIAM for platelet integrin activation, no alterations in this process could be found and it was concluded that RIAM is dispensable for the activation of β1 and β3 integrins, at least in platelets. These findings change the current mechanistic understanding of platelet integrin activation. Outside-in signaling by integrins and other surface receptors was supposed to regulate MK migration, but also the temporal and spatial formation of proplatelet protrusions. In this the- sis, phospholipase D (PLD) was revealed as critical regulator of actin dynamics and podo- some formation in MKs. Hence, the unaltered platelet counts and production in \(Pld1/2^{-/-}\) mice and the absence of a premature platelet release in the bone marrow of \(Itga2^{-/-}\) mice question the role of podosomes in platelet production and raise the need to reconsider the proposed inhibitory signaling by α2β1 integrins on proplatelet formation. Non-muscle myosin IIA (NMMIIA) has been implicated as a downstream effector of the in- hibitory signals transmitted via α2β1 integrins. Besides Rho-GTPase signaling, also \(Mg^{2+}\) and transient receptor potential melastatin-like 7 (TRPM7) channel α-kinase are known regulators of NMMIIA activity. In this thesis, TRPM7 was identified as major regulator of \(Mg^{2+}\) homeostasis in MKs and platelets. Furthermore, decreased \([Mg^{2+}]_i\) led to deregulated NMMIIA activity and altered cytoskeletal dynamics that impaired thrombopoiesis and resulted in macrothrombocytopenia in humans and mice.}, subject = {Thrombozytopoese}, language = {en} }