@phdthesis{Heinzel2012, author = {Heinzel, Sebastian}, title = {Multimodal neuroimaging of prefrontal cortex (dys)function: EEG, fNIRS, fNIRS-fMRI and Imaging Genetics approaches}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75710}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The present cumulative dissertation comprises three neuroimaging studies using different techniques, functional tasks and experimental variables of diverse nature to investigate human prefrontal cortex (PFC) (dys)function as well as methodological aspects of functional near-infrared spectroscopy (fNIRS). (1) Both dopamine (DA) availability ("inverted U-model") and excitatory versus inhibitory DA receptor stimulation ("dual-state theory") have been linked to PFC processing and cognitive control function. Electroencephalography (EEG) was recorded during a Go/NoGo response inhibition task in 114 healthy controls and 181 adult patients with attention-deficit/hyperactivity disorder (ADHD). As a neural measure of prefrontal cognitive response control the anteriorization of the P300 centroid in NoGo- relative to Go-trials (NoGo anteriorization, NGA) was investigated for the impact of genetic polymorphisms modulating catechol-O-methyltransferase efficiency (COMT, Val158Met) in degrading prefrontal DA and inhibitory DA receptor D4 sensitivity (DRD4, 48bp VNTR). Single genes and ADHD diagnosis showed no significant impact on the NGA or behavioral measures. However, a significant COMT×DRD4 interaction was revealed as subjects with relatively increased D4-receptor function (DRD4: no 7R-alleles) displayed an "inverted U"-relationship between the NGA and increasing COMT-dependent DA levels, whereas subjects with decreased D4-sensitivity (7R) showed a U-relationship. This interaction was supported by 7R-allele dose-effects and also reflected by an impact on task behavior, i.e. intraindividual reaction time variability. Combining previous theories of PFC DA function, neural stability at intermediate DA levels may be accompanied by the risk of overly decreased neural flexibility if inhibitory DA receptor function is additionally decreased. The findings of COMT×DRD4 epistasis might help to disentangle the genetic basis of dopaminergic mechanisms underlying prefrontal (dys)function. (2) While progressive neurocognitive impairments are associated with aging and Alzheimer's disease (AD), cortical reorganization might delay difficulties in effortful word retrieval, which is one of the earliest cognitive signs of AD. Therefore, cortical hemodynamic responses were measured with fNIRS during phonological and semantic verbal fluency, and investigated in 325 non-demented, healthy subjects (age: 51-82 years). The predictive value of age, sex, verbal fluency performance and years of education for the cortical hemodynamics was assessed using multiple regression analyses. Age predicted bilaterally reduced inferior frontal junction (IFJ) and increased middle frontal and supramarginal gyri activity in both task conditions. Years of education as well as sex (IFJ activation in females > males) partly predicted opposite effects on activation compared to age, while task performance was not a significant predictor. All predictors showed small effect sizes (-.24 < β < .22). Middle frontal and supramarginal gyri activity may compensate for an aging-related decrease in IFJ recruitment during verbal fluency. The findings of aging-related (compensatory) cortical reorganization of verbal fluency processing might, in combination with other (risk) factors and using longitudinal observations, help to identify neurodegenerative processes of Alzheimer's disease, while individuals are still cognitively healthy. (3) Individual anatomical or systemic physiological sources of variance may hamper the interpretation of fNIRS signals as neural correlates of cortical functions and their association with individual personality traits. Using simultaneous fNIRS and functional magnetic resonance imaging (fMRI) of hemodynamic responses elicited by an intertemporal choice task in 20 healthy subjects, variability in crossmodal correlations and divergence in associations of the activation with trait "sensitivity to reward" (SR) was investigated. Moreover, an impact of interindividual anatomy and scalp fMRI signal fluctuations on fNIRS signals and activation-trait associations was studied. Both methods consistently detected activation within right inferior/middle frontal gyrus, while fNIRS-fMRI correlations showed wide variability between subjects. Up to 41\% of fNIRS channel activation variance was explained by gray matter volume (simulated to be) traversed by near-infrared light, and up to 20\% by scalp-cortex distance. Extracranial fMRI and fNIRS time series showed significant temporal correlations at the temple. Trait SR was negatively correlated with fMRI but not fNIRS activation elicited by immediate rewards of choice within right inferior/middle frontal gyrus. Higher trait SR increased the correlation between extracranial fMRI signal fluctuations and fNIRS signals, suggesting that task-evoked systemic arousal-effects might be trait-dependent. Task-related fNIRS signals might be impacted by regionally and individually weighted sources of anatomical and systemic physiological error variance. Traitactivation correlations might be affected or biased by systemic physiological arousal-effects, which should be accounted for in future fNIRS studies of interindividual differences.}, subject = {Pr{\"a}frontaler Kortex}, language = {en} } @phdthesis{Dieler2011, author = {Dieler, Alica Christina}, title = {Investigation of variables influencing cognitive inhibition: from the behavioral to the molecular level}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The present work investigated the neural mechanisms underlying cognitive inhibition/thought suppression in Anderson's and Green's Think/No-Think paradigm (TNT), as well as different variables influencing these mechanisms at the cognitive, the neurophysiological, the electrophysiological and the molecular level. Neurophysiological data collected with fNIRS and fMRI have added up to the existing evidence of a fronto-hippocampal network interacting during the inhibition of unwanted thoughts. Some evidence has been presented suggesting that by means of external stimulation of the right dlPFC through iTBS thought suppression might be improved, providing further evidence for an implication of this region in the TNT. A combination of fNIRS with ERP has delivered evidence of a dissociation of early condition-independent attentional and later suppression-specific processes within the dlPFC, both contributing to suppression performance. Due to inconsistencies in the previous literature it was considered how stimulus valence would influence thought suppression by manipulating the emotional content of the to-be-suppressed stimuli. Findings of the current work regarding the ability to suppress negative word or picture stimuli have, however, been inconclusive as well. It has been hypothesized that performance in the TNT might depend on the combination of valence conditions included in the paradigm. Alternatively, it has been suggested that inconsistent findings regarding the suppression of negative stimuli or suppression at all might be due to certain personality traits and/or genetic variables, found in the present work to contribute to thought inhibition in the TNT. Rumination has been shown to be a valid predictor of thought suppression performance. Increased ruminative tendencies led to worse suppression performance which, in the present work, has been linked to less effective recruitment of the dlPFC and in turn less effective down-regulation of hippocampal activity during suppression trials. Trait anxiety has also been shown to interrupt thought suppression despite higher, however, inefficient recruitment of the dlPFC. Complementing the findings regarding ruminative tendencies and decreased thought inhibition a functional polymorphism in the KCNJ6 gene, encompassing a G-to-A transition, has been shown to disrupt thought suppression despite increased activation of the dlPFC. Through the investigation of thought suppression at different levels, the current work adds further evidence to the idea that the TNT reflects an executive control mechanism, which is sensitive to alterations in stimulus valence to some extent, neurophysiological functioning as indicated by its sensitivity to iTBS, functional modulations at the molecular level and personality traits, such as rumination and trait anxiety.}, subject = {Kognitiver Prozess}, language = {en} }