@phdthesis{Kerner2021, author = {Kerner, Florian Tobias}, title = {Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products}, doi = {10.25972/OPUS-20910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 - 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} }