@phdthesis{Foerster2012, author = {F{\"o}rster, Sabine}, title = {Nuclear Hormone Receptors and Fibroblast Growth Factor Receptor Signaling in Echinococcus multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Parasitic helminths share a large degree of common genetic heritage with their various hosts. This includes cell-cell-communication mechanisms mediated by small peptide cytokines and lipophilic/steroid hormones. These cytokines are candidate molecules for host-parasite cross-communication in helminth diseases. In this work the function of two evolutionary conserved signaling pathways in the model cestode Echinococcus multilocularis has been studied. First, signaling mechanisms mediated through fibroblast growth factors (FGF) and their cognate receptors (FGFR) which influence a multitude of biological functions, like homeostasis and differentiation, were studied. I herein investigated the role of EmFR which is the only FGFR homolog in E. multilocularis. Functional analyses using the Xenopus oocyte expression system clearly indicate that EmFR can sense both acidic and basic FGF of human origin, resulting in an activation of the EmFR tyrosine kinase domain. In vitro experiments demonstrate that mammalian FGF significantly stimulates proliferation and development of E. multilocularis metacestode vesicles and primary cells. Furthermore, DNA synthesis and the parasite's Erk-like MAPK cascade module was stimulated in the presence of exogenously added mammalian FGF. By using the FGFR inhibitor BIBF1120 the activity of EmFR in the Xenopus oocyte system was effectively blocked. Addition of BIBF1120 to in vitro cultivated Echinococcus larval material led to detrimental effects concerning the generation of metacestode vesicles from parasite stem cells, the proliferation and survival of metacestode vesicles, and the dedifferentiation of protoscoleces towards the metacestode. In conclusion, these data demonstrate the presence of a functional EmFR-mediated signaling pathway in E. multilocularis that is able to interact with host-derived cytokines and that plays an important role in larval parasite development. Secondly, the role of nuclear hormone receptor (NHR) signaling was addressed. Lipophilic and steroid hormone signaling contributes to the regulation of metazoan development. By means of in silico analyses I demonstrate that E. multilocularis expresses a set of 17 NHRs that broadly overlaps with that of the related flatworms Schistosoma mansoni and S. japonicum, but also contains several NHR encoding genes that are unique to this parasite. One of these, EmNHR1, is homolog to the DAF-12/HR-96 subfamily of NHRs which regulate cholesterol homeostasis in metazoans. Modified yeast-two hybrid analyses revealed that host serum contains a ligand which induces homodimerization of the EmNHR1 ligand-binding domain. Also, a HNF4-like homolog, EmHNF4, was characterized. Human HNF4 plays an important role in liver development. RT-PCR experiments showed that both isoforms of the EmHNF4 encoding gene are expressed stage-dependently suggesting distinct functions of the two isoforms in the parasite. Moreover, specific regulatory mechanisms on the convergence of NHR signaling and TGF-β/BMP signaling pathways in E. multilocularis have been identified. On the one hand, EmNHR1 directly interacted with the EmSmadC and on the other hand EmHNF4b interacted with EmSmadD, EmSmadE which are all downstream signaling components of the TGF-β/BMP signaling pathway. This suggests cross-communication in order to regulate target gene expression. With these results, further studies on the role of NHR signaling in the cestode will be facilitated. Also, the first serum-free in vitro cultivation system for E. multilocularis was established using PanserinTM401 as medium. Serum-free co-cultivation with RH-feeder cells and an axenic cultivation method have been established. With the help of this serum-free cultivation system investigations on the role of specific peptide hormones, like FGFs, or lipophilic/steroid hormones, like cholesterol, for the development of helminths will be much easier.}, subject = {Signaltransduktion}, language = {en} } @phdthesis{Jones2018, author = {Jones, Gabriel}, title = {Bioinspired FGF-2 delivery for pharmaceutical application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In resent years the rate of biologics (proteins, cytokines and growth-factors) as newly registered drugs has steadily risen. The greatest challenge for pharmaceutical biologics poses its arrival at the desired target location due to e.g. proteolytic and pH dependent degradation, plasma protein binding, insolubility etc. Therefore, advanced drug delivery systems, where biologics are site directed immobilized to carriers mimicking endogenous storage sites such as the extra cellular matrix can enormously assist the application and consequently the release of exogenous administered pharmaceutical biologics. We have resorted to the fibroblast growth factor 2/ heparansulfate/ fibroblast growth factor bindingprotein 1 system as a model. Phase I deals with the selection and subcloning of a wild type murine FGF-2 construct into the bacterial pHis-Trx vector system for high yields of expression and fast, feasible purification measurements. This first step enables the provision of mFGF-2, which plays a pivotal part as a growth factor in the wound healing process as well as the vascularization of tumors, for future investigations. Therefore, the correct expression of mFGF-2 was monitored via MALDI-MS and SDS-PAGE, whereas the proper folding of the tertiary beta-trefoil structure was assessed by fluorescence spectroscopy. The MTT assay allowed us to ensure that the bioactivity was comparable to sourced FGF-2. In the last step, the purity; a requirement for future binding- and protein-protein interaction assays was monitored chromatographically (RP-HPLC). In addition, a formulation for freeze-drying was developed to ensure protein stability and integrity over a period of 60 days. Altogether, the bacterial expression and purification proved to be suitable, leading to bioactive and stable production of mFGF-2. In Phase II the expression, purification and characterization of FGFBP1, as the other key partner in the FGF-2/ HS/ FGFBP1 system is detailed. As FGFBP1 exhibits a complex tertiary structure, comprised of five highly conserved disulfide bonds and presumably multiple glycosylation sites, a eukaryotic expression was used. Human embryonic kidney cells (HEK 293F) as suspension cells were transiently transfected with DNA-PEI complexes, leading to expression of Fc-tagged murine FGFBP1. Different PEI to DNA ratios and expression durations were investigated for optimal expression yields, which were confirmed by western blot analysis and SDS-PAGE. LC-MS/MS analysis of trypsin and elastase digested FGFBP1 gave first insights of the three O-glycosylation sites. Furthermore, the binding protein was modified by inserting a His6-tag between the Fc-tag (for purification) and the binding protein itself to enable later complexation with radioactive 99mTc as radio ligand to track bio distribution of administered FGFBP1 in mice. Overall, expression, purification and characterization of mFGFBP1 variants were successful with a minor draw back of instability of the tag free binding protein. Combining the insights and results of expressed FGF-2 as well as FGFBP1 directed us to the investigation of the interaction of each partner in the FGF-2/ HS/ FGFBP1 system as Phase III. Thermodynamic behavior of FGF-2 and low molecular weight heparin (enoxaparin), as a surrogate for HS, under physiological conditions (pH 7.4) and pathophysiological conditions, similar to hypoxic, tumorous conditions (acidic pH) were monitored by means of isothermal titration calorimetry. Buffer types, as well as the pH influences binding parameters such as stoichiometry (n), enthalpy (ΔH) and to some extent the dissociation constant (KD). These findings paved the way for kinetic binding investigations, which were performed by surface plasmon resonance assays. For the first time the KD of full length FGFBP1 and FGF-2 was measured. Furthermore the binding behavior of FGF-2 to FGFBP1 in the presence of various heparin concentrations suggest a kinetic driven release of bound FGF-2 by its chaperone FGFBP1. Having gathered multiple data on the FGF-2 /HS /FGFBP1 system mainly in solution, our next step in Phase IV was the development of a test system for immobilized proteins. With the necessity to better understand and monitor the cellular effects of immobilized growth factors, we decorated glass slides in a site-specific manner with an RGD-peptide for adhesion of cells and via the copper(I)-catalyzed-azide-alkyne cycloaddition (CuAAC) a fluorescent dye (a precursor for modified proteins for click chemistry). Human osteosarcoma cells were able to grow an the slides and the fluorescence dye was immobilized in a biocompatible way allowing future thorough bioactivity assay such as MTT-assays and phospho-ERK-assays of immobilized growth factors.}, subject = {Fibroblastenwachstumsfaktor}, language = {en} } @article{RajendranBoettigerStadelmannetal.2021, author = {Rajendran, Ranjithkumar and B{\"o}ttiger, Gregor and Stadelmann, Christine and Karnati, Srikanth and Berghoff, Martin}, title = {FGF/FGFR pathways in multiple sclerosis and in its disease models}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236594}, year = {2021}, abstract = {Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)\(_{35-55}\)-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS.}, language = {en} }