@phdthesis{Melkus2009, author = {Melkus, Gerd}, title = {Entwicklung und Anwendung spektroskopischer 1H-NMR-Methoden zur in vivo Charakterisierung von Xenograft-Tumormodellen bei 17,6 T}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Der Hauptteil der vorliegenden Arbeit befasste sich mit der Anwendung und der Entwicklung von neuen Methoden der spektroskopischen NMR-Bildgebung zur nicht-invasiven metabolischen Charakterisierung von Xenograft-Tumormodellen bei 17,6 T. In einem weiteren Abschnitt wurden verschiedene etablierte Methoden der lokalisierten NMR-Spektroskopie und der spektroskopischen Bildgebung genutzt, um den Metabolismus von H{\"u}lsenfr{\"u}chten (Pisum sativum) am Hochfeld zu untersuchen. Im experimentellen Teil der Arbeit wurde der selektive Mehrquantenfilter Sel-MQC zur Laktatbestimmung in neun verschiedenen Xenograft-Tumormodellen verwendet. Diese Werte wurden mit Ergebnissen aus der Biolumineszenz und mit der Tumorkontrolldosis 50 (TCD50) der Tumorlinien korreliert. Der Sel-MQC-Editierungsfilter stellte sich als {\"a}ußerst robuste Methode heraus das Laktat im NMR-Spektrum eindeutig von koresonanten Lipiden des Unterhautfettgewebes bzw. von tumoreigenen Lipiden zu trennen. Der Vergleich mit dem durch die Biolumineszenz bestimmten Laktat zeigte durchweg niedrigere Werte in den NMR-Messungen. Der Hauptgrund f{\"u}r diesen Unterschied besteht wahrscheinlich darin, dass mit der NMR-Methode nur das freie Laktat bestimmt werden kann, wohingegen die Biolumineszenz das gesamte Laktat erfasst. Das mit der NMR detektierbare freie Laktat zeigte allerdings eine m{\"a}ßige Korrelation zur TCD50 (R = 0,46), wodurch dieser Parameter nur als bedingt prognostisch wertvoll f{\"u}r die Strahlentherapie von Tumoren angesehen werden kann. Der Informationsgehalt pro Messzeit und damit die Effizienz der Standard-Sel-MQC-Editierungssequenz konnte durch verschiedene methodische Erweiterungen gesteigert werden. Eine zus{\"a}tzliche spektral selektive Wasserunterdr{\"u}ckung und ein weiteres Aufnahmefenster erm{\"o}glichte neben der Messung des Laktatsignals die Akquisition s{\"a}mtlicher Resonanzen des 1H-Spektrums mit einer kurzen Echozeit. Somit konnten zus{\"a}tzlich das Gesamtcholin und die Methyl- und Metylengruppen der Lipide aufgenommen werden. Neben dem Laktat erwies sich das Verh{\"a}ltnis von Lipid-Methylensignal zu Gesamtcholin (L1/tCho) als aussagekr{\"a}ftigster Parameter, um zwei untersuchte Xenograft-Tumormodelle zu unter-scheiden. Die spektroskopische Sel-MQC-Bildgebungssequenz, deren k-Raumantastung in der Regel mit reiner Phasenkodierung durchgef{\"u}hrt wird, konnte durch eine Verwendung eines Lesegradienten beschleunigt werden. Die bei dem Sel-MQC-Filter auftretenden typischen Artefakte im Bereich der Wasserresonanz sind durch zwei Aufnahmen nach dem Dixon-Prinzip und einem anschließenden Additionsverfahren unterdr{\"u}ckbar. Bei einer ausreichenden Aufnahmezeit, die abh{\"a}ngig vom T2* der zu editierenden Resonanz ist, kann mit der Methode eine nahezu {\"a}hnlich hohe Sensitivit{\"a}t wie mit dem rein phasenkodierten Experiment erreicht werden. Eine in die Sequenz eingef{\"u}gte frequenzselektive Refokussierung der Laktat-CH3-Gruppe erm{\"o}glichte die Aufnahme mehrerer Laktatechos ohne eine Phasenmodulation durch die J-Kopplung im Signal zu erhalten. Die nach einer Anregung erhaltenen Echos k{\"o}nnen zur weiteren Beschleunigung der Sequenz oder zur Bestimmung der apparenten transversalen Relaxationszeit des editieren Metaboliten verwendet werden. Das Grundprinzip des Sel-MQC-Filters konnte in einem umgekehrten Verfahren dazu verwendet werden mobile Lipide im Tumor ohne das koresonante Laktatsignal zu detektieren, um damit die Lipiddetektion zu spezifizieren. Da zur Unterdr{\"u}ckung des Metabolitensignals nur die J-Kopplung ausgenutzt wird, m{\"u}ssen weder Relaxationszeiten noch Diffusionskoeffizienten f{\"u}r die Editierung bekannt sein. Die Aufnahme des Lipidsignals wird dabei in einer Pr{\"a}paration erreicht, was die Sequenz robust gegen{\"u}ber Bewegungsartefakten macht. Die Methode kann beispielsweise mit Diffusionsgradienten kombiniert werden, um den apparenten Diffusionskoeffizienten mobiler Lipide im Tumorgewebe zu bestimmen. Das hohe Magnetfeld von 17,6 T und damit die vergr{\"o}ßerte chemische Verschiebung eigneten sich insbesonders dazu spektroskopische Messungen an Pflanzensystemen durchzuf{\"u}hren. Im letzten Teil der Arbeit wurden unterschiedliche lokalisierte 1D-, 2D-NMR-Methoden und die spektroskopische Bildgebung verwendet, um den Wildtyp und eine Mutantenform des Pisum sativum nicht-invasiv metabolisch zu untersuchen. Die mit der NMR bestimmten Metabolitenkonzentrationen im Endosperm des Pisum sativum korrelierten mit Resultaten aus biochemischen Auswertungen. Weiterhin konnten mit den NMR-Methoden auch Ergebnisse gewonnen werden, die mit biochemischen und histologischen Verfahren nicht erreicht werden k{\"o}nnen. Die Untersuchung von Pflanzen - oder wie hier von Pflanzensamen - mit spektroskopischen NMR-Methoden bieten zus{\"a}tzliche und f{\"u}r bestimmte Fragestellungen auch einzigartige Ans{\"a}tze deren Metabolismus in vivo zu untersuchen.}, subject = {Tumor}, language = {de} } @phdthesis{Moerchel2010, author = {M{\"o}rchel, Philipp}, title = {Funktionelle MR-Tomographie am Tumor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57178}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Ein Teil dieser Arbeit bestand in der Entwicklung und Etablierung von Methoden zur nichtinvasiven Erfassung von radiobiologisch relevanten Parametern des Tumormikromilieus mit der Magnet-Resonanz-Tomographie. Dabei wurden die Tumorperfusion und die Reoxygenierung des Tumors bei Beatmung mit Carbogengas als strahlentherapeutisch prognostisch relevante und vor allem auch beeinflussbare Parameter des Tumors untersucht. Die Untersuchungen fanden an einem Xenograft Modell von neun verschiedenen standardisierten humanen Tumorlinien statt, die auf Oberschenkel von M{\"a}usen transplantiert wurden. Als Teil eines multiinstitutionellen Verbundprojekts wurden parallel zu den NMR-Untersuchungen dieselben Tumorlinien mit verschiedenen Methoden der Histologie und Immunhistologie untersucht. Die Erhebung und Sammlung von einer solch großen Anzahl an Tumordaten, die mit den verschiedensten Untersuchungsmethoden an denselben Tumorlinien erfasst wurden bot eine einmalige M{\"o}glichkeit, die einzelnen Tumorparameter miteinander zu korrelieren. Durch die Vielzahl an hier untersuchten Tumorlinien waren aussagekr{\"a}ftige Korrelationen der erfassten Parameter (Perfusion, Reoxygenierung, Laktatverteilung, TCD50, Hypoxie, Blutgef{\"a}ßdichte) m{\"o}glich. Damit konnten die Zusammenh{\"a}nge der einzelnen Parameter des Tumormikromilieus genauer untersucht werden, wodurch das Verst{\"a}ndnis {\"u}ber die Vorg{\"a}nge im Tumor weiter verbessert werden konnte. Mittels quantitativer Messung des oxygenierungssensitiven NMR-Parameters T2* wurde die individuelle Reaktion der Tumoren auf die Atmung von Carbogengas ortsaufgel{\"o}st erfasst. Dabei stellte sich die Reoxygenierung als sehr guter prognostischer Faktor f{\"u}r die Strahlentherapie heraus. Durch die Reoxygenierungsmessung kann somit festgestellt werden, ob ein Patient von einer Beatmung mit Carbogengas w{\"a}hrend der Strahlentherapie profitiert. Zur nichtinvasiven Erfassung der nativen Mikrozirkulation der Tumoren wurden Spin-Labeling-Techniken eingesetzt, die ortsaufgel{\"o}ste Perfusionskarten {\"u}ber den NMR-Relaxationsparameter T1 liefern. Die Tumorperfusion wurde dabei nicht als Absolutwert berechnet, sondern als Relativwert bez{\"u}glich der Muskelperfusion angegeben, um unabh{\"a}ngig vom aktuellen Zustand des Herz-Kreislauf-System des Wirtstieres zu sein. Zwischen den einzelnen Tumorlinien konnten mit dieser Methode signifikante Unterschiede in der Tumormikrozirkulation festgestellt werden. Die Tumorperfusion liegt bei allen untersuchten Linien unter dem Wert der Muskelperfusion. Im zweiten Teil der Arbeit wurde ein Fitalgorithmus entworfen und implementiert, der es erm{\"o}glicht, v{\"o}llig neue Messsequenzen zu entwickeln, die nicht an die Restriktionen der analytischen Fitmethoden gebunden sind. So k{\"o}nnen z.B. die Schaltzeitpunkte der Pulse zur Abtastung einer Relaxationskurve frei gew{\"a}hlt werden. Auch muss das Spinsystem nicht gegen einen Gleichgewichtswert laufen um die Relaxationszeiten bestimmen zu k{\"o}nnen. Dieser Algorithmus wurde in Simulationen mit dem Standardverfahren zur T1-Akquisition verglichen. Dabei erwies sich diese Fitmethode als stabiler als das Standardmessverfahren. Auch an realen Messungen an Phantomen und in vivo liefert der Algorithmus zuverl{\"a}ssig korrekte Werte. Die im ersten Teil dieser Arbeit entwickelten Verfahren zur nichtinvasiven Erfassung strahlentherapeutisch relevanter Parameter sollen letztlich in die klinische Situation auf den Menschen {\"u}bertragen werden. Durch die geringere magnetische Feldst{\"a}rke und das damit verbundene niedrigere SNR der klinischen Magnettomographen muss jedoch die Anzahl der Mittelungen erh{\"o}ht werden, um die gleiche Qualit{\"a}t der Messdaten zu erhalten. Dies f{\"u}hrt aber schnell zu sehr langen Messzeiten, die einem Patienten nicht zugemutet werden k{\"o}nnen. Um die Messzeit zu verk{\"u}rzen wurde eine Messsequenz, aufbauend auf den erarbeiteten Fitalgorithmus entwickelt, die es erm{\"o}glicht, die T1- und T2*-Relaxationszeit simultan und in der Dauer einer herk{\"o}mmlichen T1-Messequenz zu akquirieren. Neben der Messzeitverk{\"u}rzung ist dieses Messverfahren weniger anf{\"a}llig gegen Bewegungsartefakte, die bei der r{\"a}umlichen Korrelation von einzeln nacheinander aufgenommenen T1- und T2*-Relaxationszeitkarten auftreten, da diese in einem Datensatz akquiriert wurden und somit exakt {\"u}bereinander zu liegen kommen.}, subject = {Tumor}, language = {de} } @phdthesis{Schmitt2013, author = {Schmitt, Peter}, title = {MR imaging of tumors: Approaches for functional and fast morphological characterization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of "synthetic" MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images.}, subject = {Kernspintomografie}, language = {en} }