@phdthesis{Sarma2021, author = {Sarma, Bhavishya}, title = {Merkel Cell Carcinoma: Investigations on its carcinogenesis and new therapeutic approaches}, doi = {10.25972/OPUS-24740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with an increasing incidence. The majority of MCC cases (approximately 80\%) are associated with the Merkel cell polyomavirus (MCPyV). This virus encodes for the MCPyV T antigens (small T (sT) and large T (LT)), which are oncoproteins that drive MCC carcinogenesis. However, the precise cells of the skin that are transformed by the T antigens are not known i.e., the cells of origin of MCC are yet to be discovered. Therefore, the first part of this study involved the generation and evaluation of a vector system that could be used to study MCC oncogenesis. To this end, a set of lentiviral vectors was cloned that allows independent, inducible expression of potential key factors in MCC oncogenesis. In addition, a CRISPR/Cas9 knock in was established that allows the coding sequence for a fluorescent protein to be placed under the control of the promoter of KRT20, one of the most crucial markers of MCC. The functionality of this KRT20 reporter was proven in the MCPyV-positive MCC cell line, WaGa. The different inducible vector systems (doxycycline-inducible MCPyV T antigens or MCPyV sT, RheoSwitch-inducible ATOH1 and IPTG-inducible dnMAML1 and GLI1) were found to have different efficacies in various cellular systems and in particular, a considerable reduction in efficiency was observed at times upon the interaction of several vectors in one cell. In the second and more important part of this study, the role of the well-established anti-malarial drug, artesunate, which possesses additional anti-tumor and anti-viral activity, in the treatment of MCPyV-positive MCC was analyzed. In our study, artesunate was found to be cytotoxic towards MCPyV-positive MCC cell lines in vitro and repressed tumor growth in vivo in a mouse model. Artesunate was also found to downregulate T antigen expression, which is critical for the proliferation of MCPyV-positive MCC cells. The repression of T antigen expression, however, was not the sole mechanism of artesunate's cytotoxic action; instead, the MCPyV-positive MCC cell line, WaGa, was found to be even less sensitive to artesunate after shRNA knockdown of the T antigens. Since loss of membrane integrity occurred more rapidly than degradation/loss of genomic DNA under the influence of artesunate in four of five MCPyV-positive MCC cell lines examined, apoptosis, although widely described as a modus operandi for artesunate, did not appear to be a determinant of the cytotoxicity of artesunate against MCPyV-positive MCC cells. Instead, we were able to demonstrate that artesunate induced the recently described iron-dependent and lipid peroxide-associated form of cell death known as "ferroptosis". This was achieved primarily through the use of inhibitors that can suppress specific individual steps of the ferroptotic process. Thus, artesunate-induced cell death of MCPyV-positive MCC cells could be suppressed by iron chelators and by the inhibition of lipid peroxidation and lysosomal transport. Surprising results were obtained from the analysis of two proteins associated with the ferroptotic process, namely, ferroptosis suppressor protein 1 (FSP1) and tumor suppressor protein p53. Here, we showed that ectopically- 2 expressed FSP1 cannot suppress artesunate-induced ferroptosis in MCPyV-positive MCC cells and that p53 does not play a pro-ferroptotic role in artesunate-induced cell death of MCPyV-positive MCCs. Since artesunate did not suppress the interferon-γ-induced expression of immune-related molecules such as HLA and PD-L1 on the surface of MCPyV-positive MCCs, our study also provided the first positive evidence for its use in combinatorial immunotherapy. Overall, this study showed that artesunate appears to be an effective drug for the treatment of MCPyV-positive MCC and might also be considered for its use in combinatorial MCC immunotherapy in the future.}, language = {en} } @phdthesis{Nehring2021, author = {Nehring, Helene}, title = {Role of cholesterol intermediates in supporting cell survival}, doi = {10.25972/OPUS-21763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217631}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cell death is an essential aspect of life that plays an important role for successful development and tissue remodeling as well as for diseases. There are several different types of cell death that differ from each other in morphological, functional and biochemical ways. Regulated cell death that occurs in physiological processes is generally equated with programmed cell death (PCD), whereby apoptosis is the most studied form of PCD. Ferroptosis is a form of regulated cell death and unique in its requirements for iron and lipid peroxidation. It is linked to numerous biological processes, such as amino acid metabolism, phospholipid metabolism and sterol synthesis. Cholesterol biosynthesis is a complex pathway with a large number of enzymes and substrates that are potential target points for cellular dysfunctions. Motivated by the results from a CRISPR-based genetic screening in this thesis, we focused on 7-dehydrocholesterol reductase (DHCR7), the enzyme responsible for conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. In this work we focused on the ferroptosis sensitive cell line HT1080 and generated a series of models to address the importance of DHCR7 in ferroptosis. Using CRISPR/Cas9, HT1080 DHCR7_KO and DHCR7/SC5D_KO cell lines were generated and used to validate their sensitivity against ferroptosis inducers and sterol consumption. We could show that 7-DHC is a strong antiferroptotic agent that could prevent cell death in genetic models as well as when supplemented directly to cells. Importantly, all the results obtained were subsequently confirmed in isogenic reconstituted pairs from the HT1080 DHCR7/SC5D_KO. Moreover, we demonstrate that this protective effect is not due to an inherent and unspecific resistance as the sensitivity to non-ferroptotic stimuli was equally effective in killing the HT1080 DHCR7_KO and DHCR7/SC5D_KO cell lines. We could also show that selenium present in the media has a strong impact on the activity of 7-DHC and this is because in its absence the effective concentration is rapidly decreased. Surprisingly we also demonstrate that removing sterol from cell culture triggers ferroptosis in cells unable to synthesize 7-DHC, suggestive that this could be used as a novel mechanism to trigger ferroptosis. Ultimately, in the present work we could show that unlike previously reported, 7-DHC is not only a toxic intermediate of the cholesterol biosynthesis pathway but under specific circumstances it has a strong pro-survival effect.}, subject = {Zelltod}, language = {en} }