@article{BodemSchromMoschalletal.2013, author = {Bodem, Jochen and Schrom, Eva-Maria and Moschall, Rebecca and Hartl, Maximilian J. and Weitner, Helena and Fecher, David and Langemeier, J{\"o}rg and W{\"o}hrl, Brigitta M.}, title = {U1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) site selection in foamy viruses}, series = {Retrovirology}, journal = {Retrovirology}, doi = {10.1186/1742-4690-10-55}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96085}, year = {2013}, abstract = {Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5'end of their RNA. At the 3'end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression.}, subject = {Polyadenylierung}, language = {en} } @phdthesis{Blahetek2024, author = {Blahetek, Gina}, title = {The role of alternative intronic polyadenylation on microRNA biogenesis in melanoma}, doi = {10.25972/OPUS-25474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254743}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {mRNA is co- or post-transcriptionally processed from a precursor mRNA to a mature mRNA. In addition to 5'capping and splicing, these modifications also include polyadenylation, the addition of a polyA tail to the 3'end of the mRNA. In recent years, alternative polyadenylation in particular has increasingly been taken into account as a mechanism for regulating gene expression. It is assumed that approximately 70-75 \% of human protein coding genes contain alternative polyadenylation signals, which are often located within intronic sequences of protein-coding genes. The use of such polyadenylation signals leads to shortened mRNA transcripts and thus to the generation of C-terminal shortened protein isoforms. Interestingly, the majority of microRNAs, small non-coding RNAs that play an essential role in post-transcriptional gene regulation, are also encoded in intronic sequences of protein-coding genes and are co-transcriptionally expressed with their host genes. The biogenesis of microRNA has been well studied and is well known, but mechanisms that may influence the expression regulation of mature microRNAs are just poorly understood. In the presented work, I aimed to investigate the influence of alternative intronic polyadenylation on the biogenesis of microRNAs. The human ion channel TRPM1 could already be associated with melanoma pathogenesis and truncated isoforms of this protein have already been described in literature. In addition, TRPM1 harbors a microRNA, miR211, in its sixth intron, which is assumed to act as a tumor suppressor. Since both, TRPM1 and miR211 have already been associated with melanoma pathogenesis, the shift towards truncated transcripts during the development of various cancers is already known and it has been shown that certain microRNAs play a crucial role in the development and progression of melanoma, melanoma cell lines were used as an in vitro model for these investigations.}, subject = {Polyadenylierung}, language = {en} }