@article{WetzelJablonkaBlum2013, author = {Wetzel, Andrea and Jablonka, Sibylle and Blum, Robert}, title = {Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel}, series = {Channels (Austin)}, volume = {7}, journal = {Channels (Austin)}, number = {1}, doi = {10.4161/chan.23153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132586}, pages = {51-56}, year = {2013}, abstract = {Spontaneous electrical activity preceding synapse formation contributes to the precise regulation of neuronal development. Examining the origins of spontaneous activity revealed roles for neurotransmitters that depolarize neurons and activate ion channels. Recently, we identified a new molecular mechanism underlying fluctuations in spontaneous neuronal excitability. We found that embryonic motoneurons with a genetic loss of the low-threshold sodium channel Na\(_V\)1.9 show fewer fluctuations in intracellular calcium in axonal compartments and growth cones than wild-type littermates. As a consequence, axon growth of Na\(_V\)1.9-deficient motoneurons in cell culture is drastically reduced while dendritic growth and cell survival are not affected. Interestingly, Na\(_V\)1.9 function is observed under conditions that would hardly allow a ligand- or neurotransmitter-dependent depolarization. Thus, Na\(_V\)1.9 may serve as a cell-autonomous trigger for neuronal excitation. In this addendum, we discuss a model for the interplay between cell-autonomous local neuronal activity and local cytoskeleton dynamics in growth cone function.}, language = {en} } @article{BoehmScherzerShabalaetal.2016, author = {B{\"o}hm, J. and Scherzer, S. and Shabala, S. and Krol, E. and Neher, E. and Mueller, T. D. and Hedrich, R.}, title = {Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability}, series = {Molecular Plant}, volume = {9}, journal = {Molecular Plant}, number = {3}, doi = {10.1016/j.molp.2015.09.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189803}, pages = {428-436}, year = {2016}, abstract = {The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na\(^+\)- and K\(^+\)-permeable mutants function as ion channels rather than K\(^+\) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na\(^+\)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.}, language = {en} }