@phdthesis{Blaimer2005, author = {Blaimer, Martin}, title = {Selbstkalibrierende Verfahren in der parallelen Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In der klinischen Magnetresonanztomographie (MRT) spielt neben dem Bildkontrast und der r{\"a}umlichen Aufl{\"o}sung, die Messzeit eine sehr wichtige Rolle. Auf Grund schneller Bildgebungsmethoden und technischer Fortschritte in der Ger{\"a}teentwicklung konnten die Aufnahmezeiten bis auf wenige Sekunden reduziert werden. Somit wurde die MRT zu einem der wichtigsten Verfahren in der klinischen Diagnostik. Der gr{\"o}ßte Fortschritt f{\"u}r eine weitere Verk{\"u}rzung der Aufnahmezeiten erfolgte durch die Einf{\"u}hrung von Partiell-Parallelen-Akquisitions (PPA) Techniken in den sp{\"a}ten 1990er Jahren. Inzwischen sind PPA-Verfahren etabliert und stehen auch f{\"u}r den Einsatz im klinischen Alltag zur Verf{\"u}gung. Die Grundlage aller PPA-Verfahren bildet eine Anordnung von mehreren Empfangsdetektoren, welche gleichzeitig und unabh{\"a}ngig voneinander ein Objekt abbilden. Das Signal jedes einzelnen Detektors enth{\"a}lt dabei je nach Position eine gewisse r{\"a}umliche Information. Eine Messzeitverk{\"u}rzung wird im Allgemeinen dadurch erzielt, dass die Menge der aufzunehmenden Daten reduziert wird. Dies f{\"u}hrt zu Fehler behafteten Bildern auf Grund von fehlenden Daten. Alle g{\"a}ngigen PPA-Verfahren benutzen die in der Detektoranordnung inh{\"a}rente r{\"a}umliche Information, um mit geeigneten Algorithmen die Fehler behafteten Bilder zu korrigieren. Die beiden erfolgreichsten Ans{\"a}tze stellen momentan das "Sensitivity Encoding" (SENSE) Verfahren und die "Generalized Autocalibrating Partially Parallel Acquisitions" (GRAPPA) Methode dar. Die Leistungsf{\"a}higkeit von PPA-Methoden ist allerdings beschr{\"a}nkt. Zun{\"a}chst begrenzt die Anzahl der Einzeldetektoren den maximal erreichbaren Messzeitgewinn. Weiterhin f{\"u}hrt der Einsatz von PPA-Verfahren zu einer Verringerung des Signal-zu-Rausch-Verh{\"a}ltnis (englisch: signal-to-noise ratio, SNR). Im Allgemeinen ist das SNR um den Faktor der Wurzel des Beschleunigungsfaktors verringert. Ein zus{\"a}tzlicher SNR-Verlust entsteht durch den Rekonstruktionsprozess und ist stark abh{\"a}ngig von der geometrischen Anordnung der Detektoren. Auf Grund dieser Verluste ist der Einsatz von PPA-Methoden auf Applikationen mit bereits hohem intrinsischen SNR beschr{\"a}nkt. In dieser Arbeit werden Erweiterungen von PPA-Verfahren vorgestellt, um deren Leistungsf{\"a}higkeit weiter zu verbessern. Der Schwerpunkt liegt dabei auf der selbstkalibrierenden GRAPPA-Methode, welche die fehlenden Daten im reziproken Bildraum, dem so genannten k-Raum, rekonstruiert. Zun{\"a}chst wird der Einsatz von GRAPPA f{\"u}r die 3D-Bildgebung beschrieben. In der 3D-Bildgebung ist es f{\"u}r die Rekonstruktionsqualit{\"a}t von PPA-Methoden vorteilhaft, die Daten entlang zweier Raumrichtungen zu reduzieren. GRAPPA war bisher auf Experimente mit Datenrekonstruktion in nur einer Richtung beschr{\"a}nkt. Es wird gezeigt, dass sich durch Kombination mit SENSE der Vorteil einer zwei-dimensionalen Datenreduktion erstmals auch f{\"u}r GRAPPA benutzen l{\"a}sst. Weiterhin wird eine Neuformulierung der GRAPPA-Rekonstruktion als Matrixoperation vorgestellt. Dieser Formalismus wird als GRAPPA-Operator Formalismus bezeichnet und erlaubt es, ein gemessenes Signal im k-Raum zu verschieben, um fehlende Daten zu rekonstruieren. Eigenschaften und Beziehungen zwischen unterschiedlichen Verschiebungen werden beschrieben und daraus resultierende Anwendungen f{\"u}r die 2D- und 3D-Bildgebung pr{\"a}sentiert. Im Allgemeinen arbeiten alle konventionellen PPA-Verfahren ausschließlich auf der Rekonstruktionsseite. Somit ist die Bildqualit{\"a}t und damit der erzielbare Messzeitgewinn nur durch die Geometrie der Detektoranordnung beeinflussbar. In der Mehrschicht-MRT l{\"a}sst sich diese Abh{\"a}ngigkeit von der Detektoranordnung reduzieren, indem Bildartefakte bereits w{\"a}hrend der Datenaufnahme gezielt ver{\"a}ndert werden. Auf diese Weise kann der SNR-Verlust aufgrund des Rekonstruktionsprozesses minimiert werden. Dieses Konzept der kontrollierten Einfaltungen (englisch: Controlled Aliasing in Parallel Imaging Results in Higher Acceleration, CAIPIRINHA) wird f{\"u}r den Einsatz in der dynamischen Herzbildgebung vorgestellt. Bei geringen Beschleunigungsfaktoren kann mit CAIPIRINHA im Gegensatz zu den {\"u}blichen PPA-Verfahren eine Bildqualit{\"a}t erzielt werden, welche keine signifikanten Einbußen gegen{\"u}ber konventionellen Experimenten aufweist.}, subject = {Magnetische Resonanz}, language = {de} }