@phdthesis{Fischer2010, author = {Fischer, Matthias}, title = {Der Einfluß der Ribosomale S6 Kinase 2 (RSK2) auf das Neuriten- und Synapsenwachstum in vivo und in Zellkultur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48341}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Arbeit sollte die Funktion der Ribosomalen S6 Kinase 2 (RSK2) auf neuronaler Ebene untersucht werden. Dahingehend gab es, z.B. auf Grund der Ph{\"a}notypen von Fliegen und M{\"a}usen mit Mutationen im entsprechenden Gen oder von Patienten mit Coffin-Lowry-Syndrom (CLS) nur Vermutungen. Es bestand letztlich die Hoffnung, einen Beitrag zur Aufkl{\"a}rung der Pathophysiologie des CLS zu leisten. Es stellte sich auf Grund von Experimenten sowohl in vivo als auch in vitro in verschiedenen Modellsystemen in dieser Arbeit heraus, daß RSK2 einen negativen Einfluß auf das Neuriten- und Synapsenwachstum hat. In kultivierten Motoneuronen f{\"u}hrte der KO von RSK2 zu l{\"a}ngeren Axonen und die {\"U}berexpression eines konstitutiv aktiven RSK2-Konstrukts zu k{\"u}rzeren Axonen. In PC12-Zellen f{\"u}hrte die Expression von konstitutiv aktiven RSK2 Konstrukten zur Verk{\"u}rzung der Neuriten und die Expression eines Kinase-inaktiven RSK2 Konstrukts zu l{\"a}ngeren Neuriten. In vivo war die neuromuskul{\"a}re Synapse bei RSK2-KO M{\"a}usen vergr{\"o}ßert und hatte bei Drosophila rsk Mutanten mehr Boutons. Das RSK2-Protein ist in Motoneuronen der Maus und in {\"u}berexprimierter Form in den Boutons der neuromuskul{\"a}ren Synapse bei Drosophila nachweisbar. Damit wurde zum ersten Mal die Funktion von RSK2 auf neuronaler Ebene beschrieben. Bez{\"u}glich des Mechanismus, wie RSK2 das Nervenwachstum beeinflußt gab es deutliche Hinweise, die daf{\"u}r sprechen, daß RSK2 dies {\"u}ber eine in der Literatur schon h{\"a}ufiger beschriebene Hemmung der MAPK ERK1/2 erreicht. F{\"u}r diese Hypothese spricht die Tatsache, daß die ERK-Phosphorylierung in murinen Motoneuronen und im R{\"u}ckenmark embryonaler M{\"a}use der RSK2-Mutante erh{\"o}ht ist und der Axonwachstumsdefekt durch eine Hemmung von MEK/ERK behoben werden kann. Auch ist die ERK-Phosphorylierung an der murinen Muskel-Endplatte in der Mutante erh{\"o}ht. Zudem zeigen genetische Epistasis-Experimente in Drosophila, daß RSK die Bouton-Zahl {\"u}ber ERK/RL hemmt. RSK scheint also in Drosophila von der Funktion her der RSK2-Isoform in Wirbeltieren sehr {\"a}hnlich zu sein. Ein weiteres wichtiges Ergebnis ist die Beobachtung, daß RSK2 bei Motoneuronen keinen wesentlichen Einfluß auf das {\"U}berleben der Zellen in Gegenwart neurotropher Faktoren hat. M{\"o}glicherweise spielen hier redundante Funktionen der RSK Familienmitglieder eine Rolle. Ein bislang unerkl{\"a}rter Befund ist die reduzierte Frequenz spontaner Depolarisationen bzw. damit einhergehender Ca2+ Einstr{\"o}me bei RSK2-KO Motoneuronen in Zellkultur. Die H{\"a}ufigkeit und Dichte von Ca2+-Kan{\"a}len und aktive Zonen Proteinen war in Motoneuronen nicht von der Anwesenheit des RSK2-Proteins abh{\"a}ngig. Im Hippocampus konnte außerdem das RSK2-Protein pr{\"a}synaptisch in den Moosfaser-Boutons der CA3 Region nachgewiesen werden. Es befindet sich auch in den Pyramidenzellen, aber nicht in den Pyramidenzell-Dendriten in CA3. Bez{\"u}glich der Bedeutung dieser Befunde f{\"u}r die Aufkl{\"a}rung der Pathologie des CLS ist zu folgern, daß der neuro-psychologische Ph{\"a}notyp bei CLS Patienten wahrscheinlich nicht durch reduziertes {\"U}berleben von Neuronen, sondern eher durch disinhibiertes Axonwachstum oder Synapsenwachstum bedingt ist. Dies kann grob sowohl f{\"u}r die peripheren als auch die zentralen Defekte gelten, denn die Synapsen im ZNS und am Muskel sind in ihrer molekularen Ausstattung z.B. im Bereich der Vesikel, der aktiven Zonen oder der Transmitteraussch{\"u}ttung sehr {\"a}hnlich. Weiterhin k{\"o}nnte eine ver{\"a}nderte synaptische Plastizit{\"a}t u.a. an der Moosfaser-Pyramidenzell-Synapse in der CA3 Region des Hippocampus eine Rolle bei den kognitiven und mnestischen Einschr{\"a}nkungen der Patienten spielen. Die Entdeckung, daß aktiviertes ERK bei den beobachteten Effekten eine Rolle spielt kann f{\"u}r die Entwicklung von Therapiestrategien eine wertvolle Erkenntnis sein.}, subject = {Ribosom}, language = {de} } @phdthesis{Subramanian2011, author = {Subramanian, Narayan}, title = {Role of NaV1.9 in activity dependent axon growth in embryonic cultured motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Spontaneous neural activity has been shown to regulate crucial events in neurite growth including axonal branching and path finding. In animal models of spinal muscular atrophy (SMA) cultured embryonic mouse motoneurons show distinct defect in axon elongation and neural activity. This defect is governed by abnormal clustering of Ca2+ channels in the axonal regions and the protruding growth cone area. The mechanisms that regulate the opening of calcium channels in developing motoneurons are not yet clear. The question was addressed by blocking neural activity in embryonic cultured motoneurons by pharmacological inhibition of voltage-gated sodium channels (VGSC) by saxitoxin (STX) and tetrodotoxin (TTX). Low dosages of STX resulted in significant reduction of axon growth and neural activity in cultured motoneurons. This pharmacological treatment did not affect survival of motoneurons in comparison to control motoneurons that was grown in the presence of survival neurotrophic factors BDNF and CNTF. It was also found that STX was 10 times more potent than TTX a common inhibitor of VGSC with a reduced activity on the TTX-insensitive sodium channels NaV1.5, NaV1.8 and NaV1.9. Reverse Transcriptase-PCR experiments revealed the presence of NaV1.9 as the likely candidate that begins to express from embryonic stage sixteen in the mouse spinal cord. Immunolabelling experiments showed that the channel is expressed in the axonal compartments and axonal growth cones in cultured motoneurons. Suppression of NaV1.9 in cultured motoneurons by lentivirus mediated short hairpin-RNA (shRNA) resulted in shorter axon length in comparison with uninfected and scrambled constructs. Further, embryonic motoneurons cultured from NaV1.9 knockout mice also showed a significant reduction in neural activity and axon growth. The findings of this work highlight the role of NaV1.9 as an important contender in regulating activity dependent axon growth in embryonic cultured motoneurons. NaV1.9 could therefore be considered as a prospective molecule that could play an important role in regulating axon growth in motoneuron disease models like spinal muscular atrophy (SMA).}, subject = {Axon}, language = {en} } @phdthesis{Glinka2011, author = {Glinka, Michael}, title = {Charakterisierung der Rolle des β-Aktin mRNA bindenden Proteins heterogenous nuclear ribonucleoprotein-R f{\"u}r das Axonenwachstum von Motoneuronen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57410}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bei Yeast Two-Hybrid Untersuchungen wurde in unserer Arbeitsgruppe das RNA-Bindungsprotein hnRNP-R als Interaktionspartner von SMN gefunden und es konnte gezeigt werden, dass hnRNP-R mit SMN in Axonen von prim{\"a}ren Motoneuronen kolokalisiert (Rossoll et al., 2002). hnRNP-R assoziiert mit der β-Aktin mRNA und nach {\"U}berexpression kommt es zu einer Akkumulation von β-Aktin in den Wachstumskegeln von neuronalen Zellen, sowie zu verst{\"a}rktem Neuritenwachstum bei PC12 Zellen. Wird die SMN-Bindungsdom{\"a}ne von hnRNP-R deletiert, ist dieser Effekt stark reduziert (Rossoll et al., 2003). Auf diesen in vitro Befunden ist die Hypothese begr{\"u}ndet, dass hnRNP-R an der Translokation der β-Aktin mRNA in die Wachstumskegel von neuronalen Zellen beteiligt ist. Deshalb wurde im Rahmen dieser Arbeit die Rolle von hnRNP-R bei der Entwicklung in Neuronen des Nervensystems n{\"a}her untersucht. Dazu wurden Zebrafisch Embryonen als in vivo Modellsystem f{\"u}r Morpholino vermittelte Knockdown Untersuchungen gew{\"a}hlt. Zun{\"a}chst wurde ein gegen murines Protein hergestelltes hnRNP-R Antiserum charakterisiert und gezeigt, dass es das Zebrafisch Protein spezifisch erkennt. Dieses Antiserum wurde in Western Blot Analysen verwendet um den hnRNP-R Knockdown in Zebrafisch Embryonen zu verifizieren. Bei den hnRNP-R Morpholino injizierten Embryonen konnten dosisabh{\"a}ngig axonale Ver{\"a}nderungen beobachtet werden. Diese Ver{\"a}nderungen stimmen mit einem Krankheitsmodell f{\"u}r SMA im Zebrafisch {\"u}berein. Es konnte gezeigt werden, dass das {\"U}berleben prim{\"a}rer Motoneurone in Zebrafisch Embryonen nicht beeintr{\"a}chtigt ist und dass andere neuronale Zellen keine signifikante Beeinflussung durch einen hnRNP-R Knockdown erfahren. Um die Spezifit{\"a}t des axonalen Ph{\"a}notyps, der durch hnRNP-R Knockdown hervorgerufen wurde zu belegen, wurde mit muriner hnRNP-R mRNA ein Rescue-Experiment durchgef{\"u}hrt. Es konnte gezeigt werden, dass dabei der axonale Ph{\"a}notyp weitestgehend wieder aufgehoben wurde. Parallel zu den Zebrafisch Experimenten wurde ein hnRNP-R Knockout Konstrukt mittels homologer Rekombination in Escherichia coli hergestellt und in murine embryonale Stammzellen elektroporiert. Die Charakterisierung einer hnRNP-R Knockout Maus k{\"o}nnte weitere bedeutende Einsichten in die in vivo Funktionen von hnRNP-R bei der Embryonalentwicklung und speziell der Entwicklung von Motoneuronen gew{\"a}hren. Um der Frage nach zu gehen, welche mRNAs in Wachstumskegeln von Axonen prim{\"a}rer Maus Motoneuronen zu finden sind oder durch Transportprozesse lokal akkumuliert sind,wurden Versuche unternommen, um mittels Laser-Mikrodissektion einzelne Wachstumskegel von Motoneuronen f{\"u}r Untersuchungen der enthaltenen mRNAs zu gewinnen. Erstmalig ist es im Rahmen dieser Arbeit gelungen, kompartimentalisierte Kulturen von prim{\"a}ren Motoneuronen der Maus zu etablieren. Damit wurde die Grundlage geschaffen, um RNA-Profile von distalen Zellkompartimenten wie den Axonen und Wachstumskegeln zu bestimmen.}, subject = {Heterogene Ribonucleoproteine}, language = {de} } @phdthesis{Wetzel2013, author = {Wetzel, Andrea}, title = {The role of TrkB and NaV1.9 in activity-dependent axon growth in motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92877}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {W{\"a}hrend der Entwicklung des Nervensystems lassen sich bei Motoneuronen aktivit{\"a}tsabh{\"a}ngige Kalziumstr{\"o}me eobachten, die das Axonwachstum regulieren. Diese Form der neuronalen Spontanaktivit{\"a}t sowie das Auswachsen von Axonen sind bei Motoneuronen, die aus Tiermodellen der Spinalen Muskelatrophie isoliert werden, gest{\"o}rt. Experimente aus unserer Arbeitsgruppe haben gezeigt, dass spontane Erregbarkeit und aktivit{\"a}tsabh{\"a}ngiges Axonwachstum von kultivierten Motoneuronen auch unter Verwendung von Toxinen beeintr{\"a}chtigt sind, welche die Aktivit{\"a}t von spannungsabh{\"a}ngigen Natriumkan{\"a}len blockieren. In diesen Versuchen war die Wirkung von Saxitoxin effizienter als die Wirkung von Tetrodotoxin. Wir identifizierten den Saxitoxin-sensitiven/Tetrodotoxin-insensitiven spannungsabh{\"a}ngigen Natriumkanal NaV1.9 als Trigger f{\"u}r das {\"O}ffnen spannungsabh{\"a}ngiger Kalziumkan{\"a}le. Die Expression von NaV1.9 in Motoneuronen konnte {\"u}ber quantitative RT-PCR nachgewiesen werden und antik{\"o}rperf{\"a}rbungen offenbarten eine Anreicherung des Kanals im axonalen Wachstumskegel sowie an Ranvier'schen Schn{\"u}rringen von isolierten Nervenfasern wildtypischer M{\"a}use. Motoneurone von NaV1.9 knock-out M{\"a}usen zeigen reduzierte Spontanaktivit{\"a}t und eine Reduktion des Axonwachstums, welche durch NaV1.9 {\"U}berexpression normalisiert werden kann. In Motoneuronen von Smn-defizienten M{\"a}usen konnte keine Abweichung der NaV1.9 Proteinverteilung nachgewiesen werden. K{\"u}rzlich wurden Patienten identifiziert, die eine missense-Mutation im NaV1.9 kodierenden SCN11A Gen tragen. Diese Patienten k{\"o}nnen keinerlei Schmerz empfinden und leiden zudem an Muskelschw{\"a}che in Kombination mit einer verz{\"o}gerten motorischen Entwicklung. Im Rahmen dieser Doktorarbeit konnten molekularbiologische Untersuchungen an M{\"a}usen, welche die Mutation im orthologen Scn11a Gen tragen, zur Aufkl{\"a}rung des Krankheitsmechanismus beitragen. Die Kooperationsstudie zeigte, dass eine gesteigerte Funktion von NaV1.9 diese spezifische Kanalerkrankung ausl{\"o}st, was die Wichtigkeit von NaV1.9 in menschlichen Motoneuronen unterstreicht. Eine fr{\"u}here Studie beschrieb an hippocampalen Neuronen, dass die Rezeptortyrosinkinase tropomyosin receptor kinase B (TrkB) den NaV1.9 Kanal {\"o}ffnen kann. Im Wachstumskegel von Motoneuronen ist TrkB nachweisbar und folglich in r{\"a}umlicher N{\"a}he zu NaV1.9 zu finden. Um zu pr{\"u}fen, ob TrkB in die spontane Erregbarkeit von Motoneuronen involviert ist, wurden TrkB knock-out M{\"a}use untersucht. Isolierte Motoneurone von TrkB knock-out M{\"a}usen weisen eine Reduktion der Spontanaktivit{\"a}t und eine Verringerung des Axonwachstums auf. Ob TrkB und NaV1.9 hierbei funktionell gekoppelt sind, ist Gegenstand k{\"u}nftiger Forschung.}, subject = {Motoneuron}, language = {en} } @phdthesis{Saal2017, author = {Saal, Lena}, title = {Whole transcriptome profiling of compartmentalized motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140006}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Spinal muscular atrophy and amyotrophic lateral sclerosis are the two most common devastating motoneuron diseases. The mechanisms leading to motoneuron degeneration are not resolved so far, although different hypotheses have been built on existing data. One possible mechanism is disturbed axonal transport of RNAs in the affected motoneurons. The underlying question of this study was therefore to characterize changes in transcript levels of distinct RNAs in cell culture models of spinal muscular atrophy and amyotrophic lateral sclerosis, especially in the axonal compartment of primary motoneurons. To investigate this in detail we first established compartmentalized cultures of Primary mouse motoneurons. Subsequently, total RNA of both compartments was extracted separately and either linearly amplified and subjected to microarray profiling or whole transcriptome amplification followed by RNA-Sequencing was performed. To make the whole transcriptome amplification method suitable for compartmentalized cultures, we adapted a double-random priming strategy. First, we applied this method for initial optimization onto serial dilutions of spinal cord RNA and later on to the compartmentalized motoneurons. Analysis of the data obtained from wildtype cultures already revealed interesting results. First, the RNA composition of axons turned out to be highly similar to the somatodendritic compartment. Second, axons seem to be particularly enriched for transcripts related to protein synthesis and energy production. In a next step we repeated the experiments by using knockdown cultures. The proteins depleted hereby are Smn, Tdp-43 and hnRNP R. Another experiment was performed by knocking down the non-coding RNA 7SK, the main interacting RNA of hnRNP R. Depletion of Smn led to a vast number of deregulated transcripts in the axonal and somatodendritic compartment. Transcripts downregulated in the axons upon Smn depletion were especially enriched for GOterms related to RNA processing and encode proteins located in neuron projections including axons and growth cones. Strinkingly, among the upregulated transcripts in the somatodendritic compartment we mainly found MHC class I transcripts suggesting a potential neuroprotective role. In contrast, although knockdown of Tdp-43 also revealed a large number of downregulated transcripts in the axonal compartment, these transcripts were mainly associated with functions in transcriptional regulation and RNA splicing. For the hnRNP R knockdown our results were again different. Here, we observed downregulated transcripts in the axonal compartment mainly associated with regulation of synaptic transmission and nerve impulses. Interestingly, a comparison between deregulated transcripts in the axonal compartment of both hnRNP R and 7SK knockdown presented a significant overlap of several transcripts suggesting some common mechanism for both knockdowns. Thus, our data indicate that a loss of disease-associated proteins involved in axonal RNA transport causes distinct transcriptome alterations in motor axons.}, subject = {Axon}, language = {en} }