@article{FukushimaPollock2020, author = {Fukushima, Kenji and Pollock, David D.}, title = {Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution}, series = {Nature Communications}, volume = {11,}, journal = {Nature Communications}, doi = {10.1038/s41467-020-18090-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230468}, year = {2020}, abstract = {The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.}, language = {en} } @article{ChengOthmanStopperetal.2017, author = {Cheng, Cheng and Othman, Eman M. and Stopper, Helga and Edrada-Ebel, RuAngelie and Hentschel, Ute and Abdelmohsen, Usama Ramadan}, title = {Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium \(Streptomyces\) sp. SBT348}, series = {Marine Drugs}, volume = {15}, journal = {Marine Drugs}, number = {12}, doi = {10.3390/md15120383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172644}, year = {2017}, abstract = {A new cyclic dipeptide, petrocidin A (\(\textbf{1}\)), along with three known compounds—2,3-dihydroxybenzoic acid (\(\textbf{2}\)), 2,3-dihydroxybenzamide (\(\textbf{3}\)), and maltol (\(\textbf{4}\))—were isolated from the solid culture of \(Streptomyces\) sp. SBT348. The strain \(Streptomyces\) sp. SBT348 had been prioritized in a strain collection of 64 sponge-associated actinomycetes based on its distinct metabolomic profile using liquid chromatography/high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). The absolute configuration of all α-amino acids was determined by HPLC analysis after derivatization with Marfey's reagent and comparison with commercially available reference amino acids. Structure elucidation was pursued in the presented study by mass spectrometry and NMR spectral data. Petrocidin A (\(\textbf{1}\)) and 2,3-dihydroxybenzamide (\(\textbf{3}\)) exhibited significant cytotoxicity towards the human promyelocytic HL-60 and the human colon adenocarcinoma HT-29 cell lines. These results demonstrated the potential of sponge-associated actinomycetes for the discovery of novel and pharmacologically active natural products.}, language = {en} } @article{SalkerSinghZengetal.2017, author = {Salker, Madhuri S. and Singh, Yogesh and Zeng, Ni and Chen, Hong and Zhang, Shaqiu and Umbach, Anja T. and Fakhri, Hajar and Kohlhofer, Ursula and Quintanilla-Martinez, Leticia and Durairaj, Ruban R. Peter and Barros, Flavio S. V. and Vrljicak, Pavle and Ott, Sascha and Brucker, Sara Y. and Wallwiener, Diethelm and Madunić, Ivana Vrhovac and Breljak, Davorka and Sabolić, Ivan and Koepsell, Hermann and Brosens, Jan J. and Lang, Florian}, title = {Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-11674-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173814}, year = {2017}, abstract = {Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na\(^+\)-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (\(Slc5a1^{+/+}\)) but not in SGLT1 defcient (\(Slc5a1^{-/-}\)) mice. Endometrial glycogen content, litter size and weight of offspring at birth were signifcantly lower in \(Slc5a1^{-/-}\) mice. In humans, \(SLC5A1\) expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial \(SLC5A1\) expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our fndings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome.}, language = {en} }