@phdthesis{Weigand2003, author = {Weigand, Frank}, title = {XANES und MEXAFS an magnetischen {\"U}bergangsmetalloxiden : Entwicklung eines digitalen Lock-In-XMCD-Experiments mit Phasenschieber}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8849}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit werden drei Lanthanmanganat-Systeme mittels SQUID-(Superconducting Quantum Interference Device) Magnetometrie und XMCD-(X-ray Magnetic Circular Dich-roism) Messungen an den jeweiligen Absorptionskanten (XANES: X-ray Absorption Near Edge Structure) sowie im kantenfernen Bereich (MEXAFS: Magnetic Extended X-ray Ab-sorption Fine Structure) im Hinblick auf die Kl{\"a}rung ihrer magnetischen (Unter-)Struktur untersucht. Bei Lanthanmanganaten wird sowohl im Verlauf des spingemittelten als auch spinabh{\"a}ngigen Absorptionskoeffizienten an der Mn K Kante immer eine energetisch {\"u}ber 40eV ausgedehnte Doppelstruktur beobachtet. Durch Vergleich mit theoretischen Bandstrukturrechnungen und Messungen an Referenzsystemen lassen sich diese Strukturen auf zwei energetisch getrennte, resonante {\"U}berg{\"a}nge in leere Mn 4p Zust{\"a}nde zur{\"u}ckf{\"u}hren. Die Ursachen liegen in der Kristallstruktur der Lanthanmanganate und damit ihrer Bandstruktur begr{\"u}ndet. XMCD-Messungen an den La L2,3 Kanten zeigen, dass dieses Element zur Gesamtmagnetisierung dieser Verbindungen nur ein unerhebliches Moment beitr{\"a}gt und daher in einer Xenon-{\"a}hnlichen Elektronenkonfiguration vorliegt. Durch die interatomare Coulombwechselwirkung der nahezu unbesetzten La 5d Zust{\"a}nde mit den magnetisch aktiven Ionen im Kristall dienen XMCD-Messungen an den La L2,3 Kanten als Sonde f{\"u}r die magnetische Lanthanumgebung. {\"A}hnliches gilt f{\"u}r die entsprechenden MEXAFS. Der proportionale Zusammenhang der Gr{\"o}ße der MEXAFS mit dem Spinmoment der Nachbarionen besitzt auch bei den Lanthanmanganat-Systemen mit den stark hybridisierten Elektronen der Mn 3d Schale G{\"u}ltigkeit. Der Spinmoment-Korrelationskoeffizient aSpin gilt auch hier, was eine weitere Best{\"a}tigung des MEXAFS-Modells auch f{\"u}r oxidische Systeme ist. Im dotierten System La1.2Nd0.2Sr1.6Mn2O7 koppelt das Neodymmoment innerhalb einer Doppellage antiferromagnetisch zum Mn-Untergitter. Durch die Neodym-Dotierung am La/Sr-Platz im Kristall ist die ferromagnetische Kopplung der Doppellagen untereinander abge-schw{\"a}cht und die R{\"u}ckkehr in die antiferromagnetische Phase nach dem Abschalten des {\"a}ußeren Magnetfeldes damit erleichtert. Das Mn-Bahnmoment ist von nahezu verschwindender Gr{\"o}ße („gequencht"). Das System La1.2Sr1.8Mn2-xRuxO7 zeigt mit zunehmendem Rutheniumgehalt eine Erh{\"o}hung der Curie-Temperatur, was bei Ruddlesden-Popper Phasen zum ersten Mal beobachtet wurde. Das Ru-Untergitter und das Mn-Gitter sind zueinander antiparallel gekoppelt. Durch Bestimmung der Valenzen von Mn und Ru wird ein dem Superaustausch {\"a}hnliches Kopplungsmodell entworfen, womit der Anstieg in der Curie-Temperatur erkl{\"a}rbar ist. Das neu entwickelte XMCD-Experiment auf Basis eines Phasenschiebers und digitaler Sig-nalaufbereitung durch eine Lock-In Software besitzt ein Signal-Rausch Verh{\"a}ltnis in der N{\"a}he der Photonenstatistik und liefert einen großen Zeit- und Qualit{\"a}tsgewinn gegen{\"u}ber Messmethoden mit Magnetfeldwechsel. Auf teure analoge Lock-In Messverst{\"a}rker kann verzichtet werden. Zuk{\"u}nftig erweitert sich mit diesem Aufbau die f{\"u}r XMCD-Experimente zug{\"a}ngliche Anzahl an Synchrotronstrahlpl{\"a}tzen. Diese Experimente sind jetzt auch mit linear polarisierter R{\"o}ntgenstrahlung an Wiggler/Undulator Strahlpl{\"a}tzen und zuk{\"u}nftigen XFELs (X-ray Free Electron Laser) durchf{\"u}hrbar.}, subject = {Lanthanoxid}, language = {de} }