@article{RandlkoferJordanMitesseretal.2009, author = {Randlkofer, Barbara and Jordan, Florian and Mitesser, Oliver and Meiners, Torsten and Obermaier, Elisabeth}, title = {Effect of vegetation density, height, and connectivity on the oviposition pattern of the leaf beetle Galeruca tanaceti}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49665}, year = {2009}, abstract = {Vegetation structure can profoundly influence patterns of abundance, distribution, and reproduction of herbivorous insects and their susceptibility to natural enemies. The three main structural traits of herbaceous vegetation are density, height, and connectivity. This study determined the herbivore response to each of these three parameters by analysing oviposition patterns in the field and studying the underlying mechanisms in laboratory bioassays. The generalist leaf beetle, Galeruca tanaceti L. (Coleoptera: Chrysomelidae), preferentially deposits its egg clutches on non-host plants such as grasses. Earlier studies revealed that oviposition within structurally complex vegetation reduces the risk of egg parasitism. Consequently, leaf beetle females should prefer patches with dense, tall, or connected vegetation for oviposition in order to increase their reproductive success. In the present study, we tested the following three hypotheses on the effect of stem density, height, and connectivity on oviposition: (1) Within habitats, the number of egg clutches in areas with high stem densities is disproportionately higher than in low-density areas. The number of egg clutches on (2) tall stems or (3) in vegetation with high connectivity is higher than expected for a random distribution. In the field, stem density and height were positively correlated with egg clutch presence. Moreover, a disproportionately high presence of egg clutches was determined in patches with high stem densities. Stem height had a positive influence on oviposition, also in a laboratory two-choice bioassay, whereas stem density and connectivity did not affect oviposition preferences in the laboratory. Therefore, stem height and, potentially, density, but not connectivity, seem to trigger oviposition site selection of the herbivore. This study made evident that certain, but not all traits of the vegetation structure can impose a strong influence on oviposition patterns of herbivorous insects. The results were finally compared with data on the movement patterns of the specialised egg parasitoid of the herbivore in comparable types of vegetation structure.}, subject = {Blattk{\"a}fer}, language = {en} } @article{HeisswolfUlmannObermaieretal.2007, author = {Heisswolf, Annette and Ulmann, Sandra and Obermaier, Elisabeth and Mitesser, Oliver and Poethke, Hans J.}, title = {Host plant finding in the specialised leaf beetle Cassida canaliculata: an analysis of small-scale movement behaviour}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49485}, year = {2007}, abstract = {1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues. 2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena (r = 1 m). In three different settings, a host (Salvia pratensis L., Lamiales: Lamiaceae), a non-host (Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena. 3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials. 4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies.}, subject = {K{\"a}fer}, language = {en} } @phdthesis{Reifenrath2007, author = {Reifenrath, Kerstin}, title = {Effects of variable host plant quality on the oligophagous leaf beetle Phaedon cochleariae: Performance, host plant recognition and feeding stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23459}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Abiotic environmental stress, as evoked by short-term exposure of greenhousegrown plants to ambient ultraviolet radiation (UV), induces chemical and morphological adaptations of plants. Responses depend on the strength of stress and differ between species and tissues of variable age. In two Brassicaceae, Sinapis alba and Nasturtium officinale, stress responses towards short-term exposure to ambient radiation including or excluding UV reveal a high phenotypic plasticity, with strong differences their chemical composition compared to plants that remained in the greenhouse. The most pronounced defensive response against UV, the accumulation of flavonoid pigments, was strongest in young UV-exposed leaves, with an increase of the more effectice flavonol quercetin on the expense of less effectice kaempferol. Glucosinolates and myrosinase enzymes showed highly species-specific responses to UV-stress. Feeding behaviour and larval performance of the oligophagous Brassicaceae specialist, Phaedon cochleariae (Chrysomelidae; Coleoptera) were poorly affected by these differently UV-exposed host plants. Effects of plant stress on larval development were restricted to a minor variation in body mass due to variable food conversion of certain larval instars, which were compensated until pupation. Moreover, larval developmental times were unaffected by UV-exposure, but varied between species and leaves of different age. For P. cochleariae, this lack of variation in larval and pupal development towards UV-altered phytochemistry may suggest a strong genetic fixation of life history traits. In combination, the high plasticity towards variable food quality may correspond to the beetles's specialisation on a narrow range of chemically highly variable host plants. Apart from being involved in plant defence against generalist herbivores, glucosinolates may also act as recognition cues and feeding stimulants for specialist insects. In earlier studies, glucosinolates were assumed to stimulate feeding by P. cochleariae, and they were suggested to be present on outermost leaf surfaces. However, since these findings were based on crude extraction methods, the presence of feeding stimulants in epicuticular waxes of Brassicaceae was re-investigated. In our study, glucosinolates were not detectable in mechanically removed waxes in Brassica napus and N. officinale, whereas substrate concentrations in solvent leaf extracts corresponded to densities and closure of leaf surface stomata. Therefore, glucosinolates that originate from the mesophyll may have been washed out through open stomata. Neither leaf waxes, nor leaf waxes combined with sinigrin or pure sinigrin evoked feeding. Moreover, in choice tests, these leaf beetles clearly preferred to feed on de-waxed surfaces. Finally, the presence of feeding stimulants in epicuticular waxes is highly unlikely considering the physico-chemical properties of the plant cuticle. The lack of stimulants on the outermost surface corresponds to the plant's perspective, which should avoid easily accessible feeding stimulants. Nevertheless, the role of glucosinolates for feeding stimulation of P. cochleariae remained unclear. Therefore, S. alba leaf extracts of different polarities were tested in bioassays in order to identify which chemical leaf compounds act as stimulants. In bioassay-guided fractionations of methanol extracts by semi-preparative HPLC, two distinct fractions with stimulating activity were detected, whereas other fractions were not effective. Flavonoids were identified as main component in one stimulating fractions, the second fraction mainly contained glucosinolates, including sinalbin. The combination of both fractions was significantly more stimulating than each individual fraction, indicating additive effects of at least one compound of each fraction. However, since the combined fractions were less effective compared to the original extracts, other compounds may additionally be involved in the complex composition of leaf compounds acting as feeding stimulants for P. cochleariae. Finally, fractionated extracts of UV altered plants were used to test whether the strength of feeding responses depend on different ratios of glucosinolates and flavonoids. However, since the feeding behavior of this leaf beetle was not affected, such quantitative variations were concluded to be less important. The initiation of feeding behaviour may solely depend on the presence of stimulating compounds.}, subject = {Meerrettichk{\"a}fer}, language = {en} } @phdthesis{Heisswolf2006, author = {Heisswolf, Annette}, title = {The distribution of leaf beetles on multiple spatial scales : causes and consequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18945}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Herbivorous insects are the major link between primary producers and a multitude of animals at higher trophic levels. Elucidating the causes and consequences of their distribution patterns in the "green world" is thus essential for our understanding of numerous ecological processes on multiple spatial scales. We can ask where and why a certain herbivore can be found in the landscape, within the habitat, on which plant within the habitat and finally, where on that plant. Depending on spatial scale the distribution of herbivores is shaped by different processes (fitness considerations, physiological abilities, population dynamics, dispersal behavior, history of the landscape etc.). Scaling down from fragmented landscapes to individual host plants this thesis analyzes the distribution patterns of the strictly monophagous herbivore Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), which feeds and oviposits exclusively on meadow sage, Salvia pratensis L. (Lamiales: Lamiaceae), and compares it to those of the polyphagous tansy leaf beetle Galeruca tanaceti L. (Coleoptera: Chrysomelidae), which does not oviposit on its host plants, but on dry non-host structures. The specialist Cassida canaliculata depended on all spatial scales (fragmented landscape, microhabitat and host plant individual) mainly on the distribution and quality of its single host plant species Salvia pratensis, whereas enemy-free-space - i.e. avoidance of parasitism and predation of egg clutches, larvae, and pupae - seemed to influence oviposition site choice only on the scale of the host plant individual. On this spatial scale, offspring of Cassida canaliculata had a higher chance of survival on large host plant individuals, which were also preferred for oviposition by the females. In contrast, the distribution patterns of the generalist Galeruca tanaceti was shaped by the interaction with its parasitoid regarding both microhabitat choice and egg distribution within individual host plants. On the microhabitat scale, beetles could escape from their parasitoids by ovipositing into high and dense vegetation. Regarding oviposition site choice within a host plant individual, females oviposited as high as possible in the vegetation and could thus reduce both the risk of parasitism and the probability of winter mortality. The results of my thesis show that the degree of specificity of a herbivore is of central importance for the resulting egg distribution pattern on all spatial scales.}, subject = {Blattk{\"a}fer}, language = {en} }