@phdthesis{Fischer2023, author = {Fischer, Mathias}, title = {Transient Phenomena and Ionic Kinetics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-32220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322204}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The fact that photovoltaics is a key technology for climate-neutral energy production can be taken as a given. The question to what extent perovskite will be used for photovoltaic technologies has not yet been fully answered. From a photophysical point of view, however, it has the potential to make a useful contribution to the energy sector. However, it remains to be seen whether perovskite-based modules will be able to compete with established technologies in terms of durability and cost efficiency. The additional aspect of ionic migration poses an additional challenge. In the present work, primarily the interaction between ionic redistribution, capacitive properties and recombination dynamics was investigated. This was done using impedance spectroscopy, OCVD and IV characteristics as well as extensive numerical drift-diffusion simulations. The combination of experimental and numerical methods proved to be very fruitful. A suitable model for the description of solar cells with respect to mobile ions was introduced in chapter 4.4. The formal mathematical description of the model was transferred by a non-dimensionalization and suitable numerically solvable form. The implementation took place in the Julia language. By intelligent use of structural properties of the sparse systems of equations, automatic differentiation and the use of efficient integration methods, the simulation tool is not only remarkably fast in finding the solution, but also scales quasi-linearly with the grid resolution. The software package was released under an open source license. In conventional semiconductor diodes, capacitance measurements are often used to determine the space charge density. In the first experimental chapter 5, it is shown that although this is also possible for the ionic migration present in perovskites, it cannot be directly understood as doping related, since the space charge distribution strongly depends on the preconditions and can be manipulated by an externally applied voltage. The exact form of this behavior depends on the perovskite composition. This shows, among other things, that experimental results can only be interpreted within the framework of conventional semiconductors to a very limited extent. Nevertheless, the built-in 99 potential of the solar cell can be determined if the experiments are carried out properly. A statement concerning the type and charge of the mobile ions is not possible without further effort, while their number can be determined. The simulations were applied to experimental data in chapter 6. Thus, it could be shown that mobile ions make a significant contribution to the OCVD of perovskite solar cells. j-V characteristics and OCVD transients measured as a function of temperature and illumination intensities could be quantitatively modeled simultaneously using a single global set of parameters. By the simulations it was further possible to derive a simple experimental procedure to determine the concentration and the diffusivity of the mobile ions. The possibility of describing different experiments in a uniform temperaturedependent manner strongly supports the model of mobile ions in perovskites. In summary, this work has made an important contribution to the elucidation of ionic contributions to the (photo)electrical properties of perovskite solar cells. Established experimental techniques for conventional semiconductors have been reinterpreted with respect to ionic mass transport and new methods have been proposed to draw conclusions on the properties for ionic transport. As a result, the published simulation tools can be used for a number of further studies.}, subject = {Simulation}, language = {en} } @phdthesis{Hegmann2017, author = {Hegmann, Jan}, title = {Lichtstreuende Sol-Gel-Schichten f{\"u}r die Si- D{\"u}nnschichtphotovoltaik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155815}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Ziel dieser Arbeit war es, ein Schichtsystem auf Basis des Sol-Gel-Prozesses zu entwickeln, um Lighttrapping in Si-D{\"u}nnschichtsolarzellen zu erzeugen. Die Grundlage dieses Schichtsystems bilden SiO2-Partikel, die {\"u}ber den St{\"o}ber-Prozess hergestellt werden. Es zeigte sich, dass sich die Rauheit und der Haze der Schichten {\"u}ber die Partikelgr{\"o}ße und Schichtdicke einstellen lassen. Um die mechanische Stabilit{\"a}t der reinen St{\"o}ber-Schichten zu verbessern, kamen verschiedene Binder zum Einsatz. Beste Ergebnisse zeigten Binder basierend auf l{\"o}slichen Vorstufenpulvern, da diese dem St{\"o}ber-Sol beigemischt werden konnten und so Binder und Partikel gleichzeitig aufgebracht werden konnten. Auf diese Weise entstehen mechanisch stabile, lichtstreuende Schichten. Zum Einsatz kam zun{\"a}chst ein TiO2-Binder. Durch eine anschließende Gl{\"a}ttung der St{\"o}ber-TiO2-Streuschichten mit SiO2 entsteht eine defektfreie, aber dennoch raue Oberfl{\"a}che. Zus{\"a}tzlich wird ein betr{\"a}chtlicher Teil des Lichts in große Winkel gestreut. Es konnte gezeigt werden, dass sich auf den SiO2-gegl{\"a}tteten St{\"o}ber-TiO2-Streuschichten ZnO:Al deponieren l{\"a}sst, wobei die elektrischen Eigenschaften von der Dicke der Gl{\"a}ttung abh{\"a}ngen. Auch die elektrischen Eigenschaften der Si-D{\"u}nnschichtsolarzellen h{\"a}ngen von der Gl{\"a}ttung bzw. der Dicke der Gl{\"a}ttung ab. Dies gilt insbesondere f{\"u}r die von der Materialqualit{\"a}t abh{\"a}ngigen Parameter F{\"u}llfaktor FF und offen Klemmenspannung VOC. Insgesamt fallen die Parameter jedoch noch gegen{\"u}ber Referenzzellen auf ge{\"a}tztem Frontkontakt zur{\"u}ck. Vor allem aber wurde die hohe Zellreflexion aufgrund der Glas-TiO2-Grenzfl{\"a}che als prim{\"a}res Problem identifiziert. Dennoch konnte bei einer Gl{\"a}ttungsdicke von 200 nm sehr gutes Lighttrapping beobachtet werden. Verantwortlich hierf{\"u}r ist sehr wahrscheinlich die Großwinkelstreuung der St{\"o}ber-TiO2-Streuschichten. Um die Zellreflexion zu verringern, wurde der Brechungsindex des Binders und der Gl{\"a}ttungsschichten an den Stack aus Substrat, Streuschicht und ZnO:Al-Schicht angepasst. Idee war es, durch Einbringen eines Al2O3-Vorstufenpulvers eine niedrigbrechende Komponente bereitzustellen, um durch Mischung von Al2O3- und TiO2-Vorstufenpulver freie Hand {\"u}ber den Brechungsindex des Binders und der Gl{\"a}ttung zu erhalten. Da sich das Volumenverh{\"a}ltnis von SiO2-Partikeln zu Binder bei verschiedenen Al2O3-TiO2-Verh{\"a}ltnissen nur schwer bestimmen l{\"a}sst, wurde lediglich ein reiner Al2O3-Binder in den Streuschichten eingesetzt. Die Einstellung des Brechungsindex beschr{\"a}nkte sich allein auf die Gl{\"a}ttungsschichten. Um St{\"o}ber-Al2O3-Streuschichten mit hoher Rauigkeit und geringen Defekten zu erzielen, muss das Binder-zu-Partikel-Verh{\"a}ltnis angepasst werden. Beste Ergebnisse ergaben sich bei einem Al2O3-Gehalt von 2\% im Sol. Aufgrund der hohen Rauigkeit besitzen die Streuschichten einen hohen Haze und wegen des geringen Brechungsunterschied zwischen Glas und Binder eine hohe Transmission. Die Gl{\"a}ttung der Streuschichten im Al2O3-TiO2-System ist nur mit Hilfe einer zus{\"a}tzlichen SiO2-Gl{\"a}ttungsschicht und einer reduzierten Dicke auf 50 nm m{\"o}glich. Auf den reinen defektreichen Streuschichten tendieren die Al2O3-TiO2-Schichten selbst zu Rissbildung. Zur Untersuchung der ZnO:Al-Deposition wurde eine Gl{\"a}ttungsdicke von 200 nm gew{\"a}hlt. Die erwies sich als zu gering. Die aufgebrachten ZnO:Al-Schichten wiesen gr{\"o}ßere Poren und kleinere Oberfl{\"a}chendefekte auf. Die Anpassung des Brechungsindex der Gl{\"a}ttungsschichten an die ZnO:Al-Schicht erwies sich nicht als vorteilhaft. Die reine Al2O3-Gl{\"a}ttung zeigt auch nach der ZnO:Al-Deposition die h{\"o}chste Transmission. Die Winkelverteilung des Streulichts der St{\"o}ber-Al2O3-Streuschichten ist gegen{\"u}ber den St{\"o}ber-TiO2-Streuschichten zu kleineren Winkeln verschoben. Dennoch wird ein gr{\"o}ßerer Anteil des Lichts in große Winkel gestreut, als es bei der ge{\"a}tzten ZnO:Al-Referenz der Fall ist. Trotz der Defekte in den ZnO:Al-Schichten konnten auf den St{\"o}ber-Al2O3-Streuschichten funktionierende Tandemzellen hergestellt werden. Der F{\"u}llfaktor und die offene Klemmenspannung fallen nur geringf{\"u}gig hinter die der Referenzzelle zur{\"u}ck. In der Kurzschlussstromdichte machen sich die verringerte Zellreflexion und das sehr gute Lighttrapping bemerkbar, so dass das Niveau der Referenz erreicht werden konnte. Zu beachten ist allerdings, dass gerade im langwelligen Lighttrapping-Spektralbereich die gleiche EQE erreicht wurde, trotz immer noch leicht erh{\"o}hter Zellreflexion. Die letzte Versuchsreihe konnte zeigen, dass die entwickelten Schichten sich sehr gut zur Erzeugung von Lighttrapping in Si-D{\"u}nnschichtsolarzellen eignen.}, subject = {D{\"u}nnschichtsolarzelle}, language = {de} } @phdthesis{Hauschild2015, author = {Hauschild, Dirk}, title = {Electron and soft x-ray spectroscopy of indium sulfide buffer layers and the interfaces in Cu(In,Ga)(S,Se)2-based thin-film solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In this thesis, thin-film solar cells on the basis of Cu(In,Ga)(S,Se)2 (CIGSSe) were investigated. Until today, most high efficient CIGSSe-based solar cells use a toxic and wetchemical deposited CdS buffer layer, which doesn't allow a dry inline production. However, a promising and well-performing alternative buffer layer, namely indium sulfide, has been found which doesn't comprise these disadvantages. In order to shed light on these well-performing devices, the surfaces and in particular the interfaces which play a major role for the charge carrier transport are investigated in the framework of this thesis. Both, the chemical and electronic properties of the solar cells' interfaces were characterized. In case of the physical vapor deposition of an InxSy-based buffer layer, the cleaning step of the CdS chemical-bath deposition is not present and thus changes of the absorber surface have to be taken into account. Therefore, adsorbate formation, oxidation, and segregation of absorber elements in dependence of the storing temperature and the humidity are investigated in the first part of this thesis. The efficiencies of CIGSSe-based solar cells with an InxSy buffer layer depend on the nominal indium concentration x and display a maximum for x = 42 \%. In this thesis, InxSy samples with a nominal indium concentration of 40.2\% ≤ x ≤ 43.2\% were investigated by surface-sensitive and surface-near bulk-sensitive techniques, namely with photoemission spectroscopy (PES) and x-ray emission spectroscopy (XES). The surfaces of the films were found to be sulfur-poor and indium-rich in comparison with stoichiometric In2S3. Moreover, a direct determination of the band alignment at the InxSy/CISSe interface in dependence of the nominal indium concentration x was conducted with the help of PES and inverse PES (IPES) and a flat band alignment was found for x = 42 \%. In order to study the impact of a heat treatment as it occurs during subsequent cell process steps, the indium sulfide-buffered absorbers were annealed for 30 minutes under UHV conditions at 200 °C after the initial data set was taken. Besides a reported enhanced solar cell performance, a significant copper diffusion from the absorber into the buffer layer takes place due to the thermal treatment. Accordingly, the impact of the copper diffusion on the hidden InxSy/CISSe interface was discussed and for x = 40.2\% a significant cliff (downwards step in the conduction band) is observed. For increasing x, the alignment in the conduction band turns into a small upwards step (spike) for the region 41\% ≤ x ≤ 43.2\%. This explains the optimal solar cell performance for this indium contents. In a further step, the sodium-doped indium sulfide buffer which leads to significantly higher efficient solar cells was investigated. It was demonstrated by PES/IPES that the enhanced performance can be ascribed to a significant larger surface band gap in comparison with undoped InxSy. The occurring spike in the Na:InxSy/CISSe band alignment gets reduced due to a Se diffusion induced by the thermal treatment. Furthermore, after the thermal treatment the sodium doped indium sulfide layer experiences a copper diffusion which is reduced by more than a factor of two compared to pure InxSy. Next, the interface between the Na:InxSy buffer layer and the i-ZnO (i = intrinsic, non-deliberately doped), as a part of the transparent front contact was analyzed. The i-ZnO/Na:InxSy interface shows significant interdiffusion, leading to the formation of, e.g., ZnS and hence to a reduction of the nominal cliff in the conduction band alignment. In the last part of this thesis, the well-established surface-sensitive reflective electron energy loss spectroscopy (REELS) was utilized to study the CIGSSe absorber, the InxSy buffer, and annealed InxSy buffer surfaces. By fitting the characteristic inelastic scattering cross sections λK(E) with Drude-Lindhard oscillators the dielectric function was identified. The determined dielectric functions are in good agreement with values from bulk-sensitive optical measurements on indium sulfide layers. In contrast, for the chalcopyrite-based absorber significant differences appear. In particular, a substantial larger surface band gap of the CIGSSe surface of E^Ex_Gap = (1.4±0.2) eV in comparison with bulk values is determined. This provides for the first time an independent verification of earlier PES/IPES results. Finally, the electrons' inelastic mean free paths l for the three investigated surfaces are compared for different primary energies with theoretical values and the universal curve.}, subject = {Photoelektronenspektroskopie}, language = {en} } @phdthesis{Erfurth2010, author = {Erfurth, Felix}, title = {Elektronenspektroskopie an Cd-freien Pufferschichten und deren Grenzfl{\"a}chen in Cu(In,Ga)(S,Se)2 D{\"u}nnschichtsolarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46208}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die in dieser Arbeit untersuchten Solarzellen auf Basis des Verbindungshalbleiters Cu(In,Ga)(S,Se)2 sind zur Zeit das vielversprechendste Materialsystem im Bereich der D{\"u}nnschichtfotovoltaik. Um damit m{\"o}glichst hohe Wirkungsgrade zu erreichen, ist eine CdS-Pufferschicht notwendig, welche aufgrund ihrer Toxizit{\"a}t und des schlecht integrierbaren, nasschemischen Abscheideprozesses durch alternative Pufferschichten ersetzt werden soll. Im Rahmen dieser Arbeit wurden solche Cd-freien Pufferschichten in Chalkopyrit-D{\"u}nnschichtsolarzellen untersucht. Dabei wurde insbesondere deren Grenzfl{\"a}che zum Absorber charakterisiert, da diese eine wesentliche Rolle beim Ladungstr{\"a}gertransport spielt. Die hier untersuchten (Zn,Mg)O-Schichten stellen ein vielversprechendes Materialsystem f{\"u}r solche Cd-freien Pufferschichten dar. Durch den Einbau von Magnesium k{\"o}nnen die elektronischen Eigenschaften der eigentlichen ZnO-Schicht an den Absorber angepasst werden, was zu deutlich h{\"o}heren Wirkungsgraden f{\"u}hrt. Als Hauptgrund geht man dabei von einer besseren Leitungsbandanpassung an der Grenzfl{\"a}che aus, welche allerdings bisher nur grob anhand der Position des Valenzbandmaximums an der Oberfl{\"a}che und der optischen Volumenbandl{\"u}cke abgesch{\"a}tzt werden konnte. In dieser Arbeit wurde diese Grenzfl{\"a}che daher mittels Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie untersucht, wobei durch die Kombination beider Methoden die Valenz- und Leitungsbandpositionen direkt bestimmt werden konnten. Es wurde gezeigt, dass der Bandverlauf an der Grenzfl{\"a}che tats{\"a}chlich durch die {\"A}nderung des Mg-Gehalts der (Zn,Mg)O-Schichten optimiert werden kann, was eine wichtige Voraussetzung f{\"u}r einen m{\"o}glichst verlustarmen Ladungstransport ist. Im Fall von reinem ZnO wurde ein „cliff" (Stufe nach unten) beobachtet, welches mit steigendem Mg-Gehalt abnimmt schließlich ganz verschwindet. Die weitere Erh{\"o}hung des Mg-Gehalts f{\"u}hrt zur Bildung eines „spike" (Stufe nach oben). Dass es sich bei einer solchen Stufe nicht um die abrupte {\"A}nderung des Bandverlaufs an einer „idealen", scharf definierten Grenzfl{\"a}che handelt, haben die vorliegenden Untersuchungen der chemischen Struktur gezeigt. Infolge der dabei beobachteten Durchmischungseffekte bildet sich eine sehr komplexe Grenzfl{\"a}che mit endlicher Breite aus. So wurde bei der Deposition der (Zn,Mg)O-Schichten die Bildung von In-O-Verbindungen an der Grenzfl{\"a}che beobachtet. Im Fall von Zn konnte die Diffusion in den Absorber nachgewiesen werden, wodurch es dort zur Bildung von ZnS kommt. Im weiteren Verlauf dieser Arbeit wurde die Grenzfl{\"a}che zwischen der (Zn,Mg)O-Pufferschicht und CuInS2-Absorbern untersucht. Durch ihre h{\"o}here Bandl{\"u}cke im Vergleich zu den oben untersuchten Cu(In,Ga)(S,Se)2-Absorbern erhofft man sich eine h{\"o}here Leerlaufspannung und dadurch bessere Wirkungsgrade. Bisher liegt dieser Leistungsanstieg allerdings unter den zu erwartenden Werten, wof{\"u}r eine schlechte Anpassung des Leitungsbandverlaufs an die herk{\"o}mmliche CdS-Pufferschicht verantwortlich gemacht wird. Gerade f{\"u}r dieses Materialsystem scheint sich daher (Zn,Mg)O als Pufferschicht anzubieten, um die Bandanpassung an der Grenzfl{\"a}che zu optimieren. Bei den in dieser Arbeit durchgef{\"u}hrten Untersuchungen an dieser Grenzfl{\"a}che konnten ebenfalls Durchmischungsprozesse beobachtet werden. Zus{\"a}tzlich wurde gezeigt, dass auch bei diesem Materialsystem der Bandverlauf an der Grenzfl{\"a}che durch die Variation des Mg-Gehalts angepasst werden kann. Insgesamt konnte so f{\"u}r beide Absorbertypen ein detailliertes Bild der (Zn,Mg)O/Puffer-Grenzfl{\"a}che gezeichnet werden. F{\"u}r hinreichend gute Wirkungsgrade von Zellen mit „trocken" abgeschiedenen Pufferschichten ist in den meisten F{\"a}llen eine zus{\"a}tzliche, nasschemische Vorbehandlung des Absorbers notwendig, deren Einfluss auf die Absorberoberfl{\"a}che ebenfalls in dieser Arbeit untersucht wurde. Dabei hat sich gezeigt, dass durch eine solche Behandlung das auf der Oberfl{\"a}che angereicherte Natrium vollst{\"a}ndig entfernt wird, was eine deutliche Steigerung desWirkungsgrades zur Folge hat.Weitere Untersuchungen f{\"u}hrten zu dem Ergebnis, dass eine solche Reinigung der Absorberoberfl{\"a}che auch durch den Prozess der Sputterdeposition selbst hervorgerufen werden kann. So kommt es neben der Ablagerung des Schichtmaterials zu deutlichem Materialabtrag von der Absorberoberfl{\"a}che, wodurch diese von Adsorbaten und von auf der Oberfl{\"a}che sitzenden Oxidverbindungen gereinigt wird. Untersuchungen an Absorbern, welche in einem Cd2+-haltigen Bad vorbehandelt wurden, haben gezeigt, dass der dabei abgeschiedene CdS/Cd(OH)2-Film ebenfalls fast vollst{\"a}ndig w{\"a}hrend der Sputterdeposition entfernt wird. Abschließend wurden auf In2S3-basierende Pufferschichten charakterisiert, welche aufgrund ihrer bisher erreichten hohen Wirkungsgrade eine weitere Alternative zu CdS-Puffern darstellen. Hier wurde an der Grenzfl{\"a}che zum Absorber eine starke Diffusion der Cu-Atome in die Pufferschicht hinein beobachtet, wodurch es zur Bildung von CuInS2-Phasen kommt. Messungen an bei verschiedenen Temperaturen abgeschiedenen Schichten haben gezeigt, dass diese Diffusion durch hohe Temperaturen zus{\"a}tzlich verst{\"a}rkt wird. Gleichzeitig konnte auch die Diffusion von Ga-Atomen nachgewiesen werden, welche allerdings wesentlich schw{\"a}cher ausf{\"a}llt. Analog zu den vorangegangenen Ergebnissen konnte somit auch bei diesem Materialsystem die Ausbildung einer sehr komplexen Grenzfl{\"a}chenstruktur beobachtet werden.}, subject = {D{\"u}nnschichtsolarzelle}, language = {de} } @phdthesis{Herber2006, author = {Herber, Ulrich}, title = {Rastertunnelspektroskopie an polykristallinen Cu(In,Ga)(S,Se)2-D{\"u}nnschichtsolarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {[...] Bei dem hier untersuchten multin{\"a}ren System CIGSe stellt sich ob seiner polykristallinen Struktur zudem die Frage nach der lateralen Homogenit{\"a}t der elektrischen Eigenschaften. Mit der verwendeten Meßmethode, einer photounterst{\"u}tzten Rastertunnelspektroskopie, k{\"o}nnen Inhomogenit{\"a}ten in der Oberfl{\"a}chenphotospannung (SPV) und im Photoinduzierten Tunnelstrom (PITC) nachgewiesen werden. Die Messung von PITC und SPV ist dann schnell durchzuf{\"u}hren und damit f{\"u}r Reihenuntersuchungen geeignet, wenn Modulationsverfahren verwendet werden. Modulationen der Biasspannung und/oder der Beleuchtung wurden in der Tunnelspektroskopie bereits auf eine ganze Anzahl von Materialsystemen angewendet. Dabei auftretende, {\"u}ber die Kapazit{\"a}t zwischen Tunnelspitze und Probe einkoppelnde st{\"o}rende Signalbeitr{\"a}ge sind ein bekanntes Problem. Eine m{\"o}gliche L{\"o}sung bietet die elektronische Kompensation durch eine entsprechende Schaltung. Wie in dieser Arbeit gezeigt wird, ist der Ansatz sehr gut geeignet, die durch Biasmodulation erzeugte Streukomponente zu unterdr{\"u}cken. Wird dagegen die einfallende Beleuchtung moduliert, erfolgt die Kompensation nur unvollst{\"a}ndig. Ein besonderes Problem bereitet dies, wenn beide Modulationen kombiniert werden. Der Unterschied zwischen beiden Modulationen liegt darin, daß sich das Spitze-Probe-System im Fall der Spannungsmodulation wie ein klassischer Kondensator verh{\"a}lt und das Streusignal daher unabh{\"a}ngig von der Art der Probe ist. Bei Lichtmodulation ist im Ersatzschaltbild dagegen die unter der Probenoberfl{\"a}che befindliche Stromquelle zu ber{\"u}cksichtigen. Sie f{\"u}hrt dazu, daß sich das Streusignal von Probe zu Probe, und sogar von einem Pr{\"a}parationszustand zum n{\"a}chsten, deutlich unterscheidet. Daher ist es angebracht, das Streusignal separat zu messen und anschließend analytisch zu kompensieren. Wie aus der vorliegenden Arbeit hervorgeht, ist dabei die Abh{\"a}ngigkeit des Streusignals vom Spitze-Probe-Abstand unbedingt zu ber{\"u}cksichtigen. Nach der Etablierung und eingehenden Analyse des Verfahrens im ersten Teil folgt im zweiten Teil der Arbeit dessen Anwendung auf eine Reihe von unterschiedlichen CIGS-Proben. Dabei wird deutlich, daß die bereits angesprochenen Inhomogenit{\"a}ten im PITC-Signal eine immanente Eigenschaft dieser (und vermutlich aller) polykristallinen Halbleitersysteme sind. Neben den lateralen Unterschieden in der Stromamplitude lassen sich auch Inhomogenit{\"a}ten in der komplexen Phase des Photostroms nachweisen. Wie sich herausstellt, sind daraus aber wegen der dominierenden Admittanz der Tunnell{\"u}cke keine R{\"u}ckschl{\"u}sse auf die beteiligte Kapazit{\"a}t der RLZ zu ziehen. Dagegen ist es m{\"o}glich, durch die Untersuchung einer gr{\"o}ßeren Zahl von Stellen auf einer Probe eine Statistik der Fl{\"a}chenh{\"a}ufigkeit des PITC zu erstellen. Wird diese Verteilung durch eine exponentiell abfallende H{\"a}ufigkeit beschrieben, weist dies auf eine {\"u}bergroße Dichte an "schwachen" Dioden hin; bei einer kleinen Zahl schwacher Dioden zeigt die Verteilung ein deutliches Maximum bei h{\"o}heren Photostr{\"o}men. Korngrenzen sind f{\"u}r die elektronischen Eigenschaften polykristalliner Systeme wichtig, ihre Struktur allerdings unbekannt. Aus dem Forschungsgebiet der ebenfalls polykristallinen CdS/CdTe-Solarzellen kommt die Vorstellung, daß die Korngrenzen bevorzugte Transportpfade der Ladungstr{\"a}ger darstellen; sie wird inzwischen auch f{\"u}r CIGS-Zellen diskutiert. Hunderte von untersuchten Probenstellen k{\"o}nnen diese Theorie jedoch nicht unterst{\"u}tzen. Nur in einer {\"a}ußerst geringen Zahl von F{\"a}llen zeigen Korngrenzen einen deutlich h{\"o}heren Photostrom im Vergleich zu den umgebenden Kornfl{\"a}chen. Desweiteren werden die abrupten lateralen {\"A}nderungen im PITC-Signal als nicht passivierte Korngrenzen interpretiert, die Transportbarrieren f{\"u}r die Minorit{\"a}tsladungstr{\"a}ger bilden. Umgekehrt beg{\"u}nstigen passivierte Korngrenzen das Angleichen der elektronischen Eigenschaften benachbarter K{\"o}rner. Verfolgt man die PITC-Werte {\"u}ber einen l{\"a}ngeren Zeitraum hinweg, lassen sich metastabile Effekte beobachten. Das Abklingen des Photostroms wird durch den Einfang von Minorit{\"a}tsladungstr{\"a}gern in tiefen St{\"o}rstellen erkl{\"a}rt. Vergleicht man die erhaltenen PITC-Werte mit dem makroskopischen Kurzschlußstrom der Zellen, kann man die erhoffte Korrelation nicht nachweisen. Wie sich herausstellt, haben die zur Vorbereitung f{\"u}r die STM-Messungen n{\"o}tigen Pr{\"a}parationsschritte starke Auswirkung auf die Meßergebnisse. Aus dieser Sicht w{\"a}re eine in-situ-Messung w{\"u}nschenswert. Daher schließen einige Gedanken hinsichtlich der Realisierung der Meßmethode zur in-situ-Qualit{\"a}tskontrolle in der Solarzellenherstellung die Arbeit ab.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Weinhardt2005, author = {Weinhardt, Lothar}, title = {Elektronische und chemische Eigenschaften von Grenzfl{\"a}chen und Oberfl{\"a}chen in optimierten Cu(In,Ga)(S,Se)2 D{\"u}nnschichtsolarzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16234}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In der vorliegenden Arbeit wurden Untersuchungen an D{\"u}nnschichtsolarzellen auf der Basis von Cu(In,Ga)(S,Se)2, der heute vielversprechendsten D{\"u}nnschichttechnologie, durchgef{\"u}hrt. F{\"u}r eine weitere Optimierung der Zellen ist ein detailliertes Verst{\"a}ndnis ihrer chemischen, elektronischen und strukturellen Eigenschaften notwendig. Insbesondere die in dieser Arbeit untersuchten Eigenschaften an den Grenzfl{\"a}chen der Zelle sind aufgrund ihrer zentralen Rolle f{\"u}r den Ladungstr{\"a}gertransport von besonderem Interesse. Bei den vorliegenden Untersuchungen kamen verschiedene Spektroskopien zum Einsatz. Mit einer Kombination von Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie war es m{\"o}glich, sowohl eine direkte Bestimmung der Valenz- und Leitungsbandanpassungen an den untersuchten Grenzfl{\"a}chen durchzuf{\"u}hren als auch Oberfl{\"a}chenbandl{\"u}cken zu bestimmen. Die Messungen wurden durch die volumenempfindliche R{\"o}ntgenemissionsspektroskopie ideal erg{\"a}nzt, die - wie diese Arbeit zeigt - zusammen mit der Photoelektronenspektroskopie besonders n{\"u}tzlich bei der Analyse des Durchmischungsverhaltens an Grenzfl{\"a}chen oder auch des Einflusses chemischer Behandlungen auf die chemischen und elektronischen Eigenschaften von Oberfl{\"a}chen ist. Im ersten Teil der Arbeit wurden vier Grenzfl{\"a}chen in Proben auf der Basis des Cu(In,Ga)(S,Se)2-Absorbers von Shell Solar (M{\"u}nchen) untersucht. Es konnte dabei zun{\"a}chst das Durchmischungsverhalten an der CdS/CuIn(S,Se)2-Grenzfl{\"a}che in Abh{\"a}ngigkeit des S-Gehaltes an der Absorberoberfl{\"a}che untersucht werden. Bei Messungen an der i-ZnO/CdS-Grenzfl{\"a}che wurde ein flacher Leitungsbandverlauf gefunden, zudem konnte eine Durchmischung an dieser Grenzfl{\"a}che ausgeschlossen werden. Eine besondere Herausforderung stellten die Messungen an der Grenzfl{\"a}che des Absorbers zum Molybd{\"a}nr{\"u}ckkontakt dar, da diese Grenzfl{\"a}che nach ihrem Entstehen unweigerlich unter der etwa 1-2 um dicken Absorberschicht begraben liegt. Durch geeignetes Abspalten des Absorbers vom R{\"u}ckkontakt gelang es, diese Grenzfl{\"a}che freizulegen und zu spektroskopieren. Die Untersuchungen zur Vorbehandlung des Shell-Absorbers mit einer ammoniakalischen Cd-L{\"o}sung dienten dem Verst{\"a}ndnis der positiven Einfl{\"u}sse dieser Behandlung auf den Zellwirkungsgrad. Dabei wurde neben verschiedenen Reinigungswirkungen auf den Absorber als wichtigster Befund die Bildung einer sehr d{\"u}nnen CdS-Schicht und, f{\"u}r hohe Cd-Konzentrationen, einer zus{\"a}tzlichen Cd(OH)2-Schicht auf der Absorberoberfl{\"a}che nachgewiesen. Die gewonnenen Erkenntnisse {\"u}ber die Cd-Behandlung haben eine besondere Bedeutung f{\"u}r die Untersuchung der Grenzfl{\"a}che des Absorbers und einer mit ILGAR ("Ion Layer Gas Reaction") hergestellten Zn(O,OH)-Pufferschicht. An dieser Grenzfl{\"a}che wurde die Bandanpassung mit und ohne vorherige Cd-Behandlung des Absorbers vermessen. Wird die Bandanpassung ohne Vorbehandlung noch durch Adsorbate auf dem Absorber dominiert, wobei man ein "Cliff" im Leitungsband findet, so ist der Leitungsbandverlauf f{\"u}r die Grenzfl{\"a}che mit Cd-behandeltem Absorber flach, was im Einklang mit den sehr guten Wirkungsgraden steht, die mit solchen Zellen erreicht werden. Im zweiten Teil der Arbeit wurden Messungen an D{\"u}nnschichtsolarzellen mit selenfreiem Cu(In,Ga)S2 Absorber diskutiert. Ein Problem des Cu(In,Ga)S2-Systems besteht heute noch darin, daß die offene Klemmenspannung geringer ausf{\"a}llt, als dies aufgrund der im Vergleich zu CuInSe2 gr{\"o}ßeren Bandl{\"u}cke zu erwarten w{\"a}re. Modelle, die dies auf eine ung{\"u}nstige Bandanpassung an der CdS/Cu(In,Ga)S2-Grenzfl{\"a}che zur{\"u}ckf{\"u}hren, konnten in dieser Arbeit durch die Messung der Leitungsbandanpassung, die ein deutlich "Cliff"-artiges Verhalte aufweist, best{\"a}tigt werden. Untersuchungen des Einflusses unterschiedlicher Oberfl{\"a}chenzusammensetzungen auf die chemischen und elektronischen Eigenschaften der Cu(In,Ga)Se2-Absorberoberfl{\"a}che ergaben, wie sich die Bandl{\"u}cke des Absorbers mit wachsender Kupferverarmung vergr{\"o}ßert und gleichzeitig die Bandverbiegung zunimmt. Im letzten, rein grundlagenorientierten Teil dieser Arbeit wurden R{\"o}ntgenabsorptions- und resonante R{\"o}ntgenemissionsmessungen an CdS und ZnS im Vergleich zu von A. Fleszar berechneten theoretischen Spektren, die unter Ber{\"u}cksichtigung der {\"U}bergangsmatrixelemente aus einer LDA-Bandstruktur berechnet wurden, diskutiert. Es konnten dabei sowohl Anregungen in exzitonische Zust{\"a}nde als auch koh{\"a}rente Emission mit Informationen {\"u}ber die Bandstruktur gefunden werden. Auch war es m{\"o}glich, die Lebensdauern verschiedener Valenzlochzust{\"a}nde zu bestimmen. Es zeigt sich, daß so die Bestimmung einer unteren Grenze f{\"u}r die Bandl{\"u}cke m{\"o}glich ist, f{\"u}r eine genaue Bestimmung bei den untersuchten Verbindungen jedoch ein Vergleich mit theoretischen Berechnungen notwendig ist.}, subject = {D{\"u}nnschichtsolarzelle}, language = {de} }