@phdthesis{Wolpert2008, author = {Wolpert, Daniel}, title = {Quantum Control of Photoinduced Chemical Reactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The control of quantum mechanical processes, especially the selective manipulation of photochemical reactions by shaped fs laser pulses was successfully demonstrated in many experiments in the fields of physics, chemistry and biology. In this work, attention is directed to the control of two systems that mark a bridge to real synthetic chemistry. In a liquid phase environment the outcome of the photo-induced Wolff rearrangement of an industrially relevant diazonaphthoquinone compound, normally used in photoresists (e.g. Novolak) was optimized using shaped fs laser pulses. In the second series of experiments chemical reactions on a catalyst metal surface which comprise laser induced molecular bond formation channels were selectively manipulated for the first time. The control of liquid phase reactions necessitates adequate spectroscopic signals that are characteristic for the formed product species. Therefore, a pump-probe setup for transient absorption spectroscopy in the mid-infrared for the purpose of investigating ultrafast structural changes of molecules during photoreactions was constructed. This versatile setup enables to monitor structural changes of molecules in the liquid phase and to find appropriate feedback signals for the control of these processes. Prior to quantum control experiments, the photoinduced Wolff-rearrangement reaction of 2-diazo-1-naphthoquinone (DNQ) dissolved in water and methanol was thoroughly investigated. Steady state absorption measurements in the mid-infrared in combination with quantum chemical density functional theory (DFT) calculations revealed the characteristic vibrational bands of DNQ and of possible products. A mid-infrared transient absorption study was performed, to illuminate the structural dynamics of the ultrafast rearrangement reaction of DNQ. The experimental observations indicate, that the Wolff rearrangement reaction of DNQ proceeds within 300 fs. A model for the relaxation dynamics of the ketene photoproduct and DNQ after photoexcitation can be deduced that fits the measured data very well. The object of the quantum control experiments on DNQ was the improvement of the ketene yield. It was shown that the ketene formation after Wolff rearrangement of DNQ is very sensitive to the shape of the applied excitation laser pulses. The variation of single parameters, like the linear chirp as well as the pulse separation of colored double pulses lead to the conclusion that the well known intrapulse dumping mechanism is responsible for the impact of the frequency ordering within the excitation pulse on the photoproduct yield. Adaptive optimizations using a closed learning loop basically lead to the same result. Adaptive fs quantum control was also applied to surface reactions on a catalyst metal surface for the first time. Therefore, the laser-induced catalytic reactions of carbon monoxide (CO) and hydrogen (H2) on a Pd(100) single crystal surface were studied. This photochemical reaction initiated with fs laser pulses has not been observed before. Several product molecules could be synthesized, among them also species (e.g. CH^3+) for whose formation three particles are involved. The systematic variation of different parameters showed that the reactions are sensitive to the catalyst surface, the composition of the adsorbate and to the laser properties. A pump-probe study revealed that they occur on an ultrafast time scale. These catalytic surface reactions were then investigated and improved with phaseshaped fs laser pulses. By applying a feedback optimal control scheme, the reaction outcome could be successfully manipulated and the ratio of different reaction channels could be selectively controlled. Evidence has been found that the underlying control mechanism is nontrivial and sensitive to the specific conditions on the surface. The experiments shown here represent the first successful experiment on adaptive fs quantum control of a chemical reaction between adsorbate molecules on a surface. In contrast to previous quantum control experiments, reaction channels comprising the formation of new molecular bonds rather than the cleavage of already existing bonds are controlled. This work successfully showed that quantum control can be extended to systems closer to situations encountered in synthetic chemistry as was demonstrated in the two examples of the optimization of a complicated rearrangement reaction and the selective formation of chemical bonds with shaped fs laser pulses.}, subject = {Nichtlineare Spektroskopie}, language = {en} } @phdthesis{Fechner2008, author = {Fechner, Susanne}, title = {Quantenkontrolle im Zeit-Frequenz-Phasenraum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die in der vorliegenden Arbeit eingef{\"u}hrte von Neumann-Darstellung beschreibt jeden Laserpuls auf eineindeutige Weise als Summe von an verschiedenen Punkten des Zeit-Frequenz-Phasenraumes zentrierten, bandbreitebegrenzten Gaußimpulsen. Diese Laserpulse bilden sozusagen die „elementaren" Bausteine, aus denen jeder beliebige Lichtimpuls konstruiert werden kann. Die von Neumann-Darstellung vereint eine Reihe von Eigenschaften, die sie f{\"u}r eine Anwendung auf dem Gebiet der Quantenkontrolle besonders geeignet erscheinen l{\"a}sst. So ist sie eine bijektive Abbildung zwischen den Freiheitsgraden des verwendeten Impulsformers und der Phasenraumdarstellung der resultierenden, geformten Laserpulse. Jeder denkbaren Wahl von Impulsformerparametern entspricht genau eine von Neumann-Darstellung und umgekehrt. Trotzdem erm{\"o}glicht sie, ebenso wie die Husimi- oder die Wigner-Darstellung, eine intuitive Interpretation der dargestellten Lichtimpulse, da deren zeitliche und spektrale Struktur sofort zu erkennen ist.}, subject = {Femtosekundenlaser}, language = {de} } @phdthesis{Selle2007, author = {Selle, Reimer Andreas}, title = {Adaptive Polarization Pulse Shaping and Modeling of Light-Matter Interactions with Neural Networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump-probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near-IR polarization-shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization of polarization-shaped laser pulses in the UV are introduced. Systematic scans of double-pulse sequences are introduced for the investigation and interpretation of control mechanisms. This concept is first introduced and illustrated for an optical demonstration experiment, and it is then applied for the analysis of the intrapulse dumping mechanism that is observed in the excitation of a large dye molecule in solution with ultrashort laser pulses. Shaped laser pulses are employed as a means for obtaining copious amounts of data on light-matter interactions. Neural networks are introduced as a novel tool for generating computer-based models for these interactions from the accumulated data. The viability of this approach is first tested for second harmonic generation (SHG) and molecular fluorescence processes. Neural networks are then utilized for modeling the far more complex coherent strong-field dynamics of potassium atoms.}, subject = {Lasertechnologie}, language = {en} } @phdthesis{Marquetand2007, author = {Marquetand, Philipp}, title = {Vectorial properties and laser control of molecular dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24697}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In this work, the laser control of molecules was investigated theoretically. In doing so, emphasis was layed on entering vectorial properties and in particular the orientation in the laboratory frame. Therefore, the rotational degree of freedom had to be included in the quantum mechanical description. The coupled vibrational and rotational dynamics was examined, which is usually not done in coherent control theory. Local control theory was applied, where the field is determined from the dynamics of a system, which reacts with an instantaneous response to the perturbation and, in turn, determines the field again. Thus, the field is entangled with the quantum mechanical motion and the presented examples document, that this leads to an intuitive interpretation of the fields in terms of the underlying molecular dynamics. The limiting case of a classical treatment was shown to give similar results and hence, eases to understand the complicated structure of the control fields. In a different approach, the phase- and amplitude shaping of laser fields was systematically studied in the context of controlling population transfer in molecules.}, subject = {Laserchemie}, language = {en} } @phdthesis{Winterfeldt2006, author = {Winterfeldt, Carsten}, title = {Generation and control of high-harmonic radiation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20309}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {High-harmonic generation provides a powerful source of ultrashort coherent radiation in the XUV and soft-x-ray range, which also allows for the production of attosecond light pulses. Based on the unique properties of this new radiation it is now possible to perform time-resolved spectroscopy at high excitation energies, from which a wide field of seminal discoveries can be expected. Since the exploration and observation of the corresponding processes in turn are accompanied by the desire to control them, this work deals with new ways to manipulate and characterize the properties of these high-harmonic-based soft-x-ray pulses. After introductory remarks this work first presents a comprehensive overview over recent developments and achievements on the field of the control of high-harmonic radiation in order to classify the experimental results obtained in this work. These results include the control of high-harmonic radiation both by temporally shaping and by manipulating the spatial properties of the fundamental laser pulses. In addition, the influence of the conversion medium and of the setup geometry (gas jet, gas-filled hollow fiber) was investigated. Using adaptive temporal pulse shaping of the driving laser pulse by a deformable mirror, this work demonstrates the complete control over the XUV spectrum of high harmonics. Based on a closed-loop optimization setup incorporating an evolutionary algorithm, it is possible to generate arbitrarily shaped spectra of coherent soft-x-ray radiation in a gas-filled hollow fiber. Both the enhancement and suppression of narrowband high-harmonic emission in a selected wavelength region as well as the enhancement of coherent soft-x-ray radiation over a selectable extended range of harmonics (multiple harmonics) can be achieved. Since simulations that do not take into account spatial properties such as propagation effects inside a hollow fiber cannot reproduce the experimentally observed high contrast ratios between adjacent harmonics, a feedback-controlled adaptive two-dimensional spatial pulse shaper was set up to examine selective fiber mode excitation and the optimization of high-harmonic radiation in such a geometry. It is demonstrated that different fiber modes contribute to harmonic generation and make the high extent of control possible. These results resolve the long-standing issue about the controllability of high-harmonic generation in free-focusing geometries such as gas jets as compared to geometries where the laser is guided. Temporal pulse shaping alone is not sufficient. It was possible to extend the cutoff position of harmonics generated in a gas jet, however, selectivity cannot be achieved. The modifications of the high-harmonic spectrum have direct implications for the time structure of the harmonic radiation, including the possibility for temporal pulse shaping on an attosecond time scale. To this end, known methods for the temporal characterization of optical pulses and high-harmonic pulses (determination of the harmonic chirp on femtosecond and attosecond time scales) were introduced. The experimental progress in this work comprises the demonstration of different setups that are in principle suitable to determine the time structure of shaped harmonic pulses based on two-photon two-color ionization cross-correlation techniques. Photoelectron spectra of different noble gases generated by photoionization with high-harmonic radiation reproduce the spin-orbit splitting of the valence electrons and prove the satisfactory resolution of our electron time-of-flight spectrometer for the temporal characterization of high harmonics. Unfortunately no positive results for this part could be achieved so far, which can probably be attributed mainly to the lack of the focusability of the high harmonics and to the low available power of our laser system. However, we have shown that shaping the high-harmonic radiation in the spectral domain must result in modifications of the time structure on an attosecond time scale. Therefore this constitutes the first steps towards building an attosecond pulse shaper in the soft-x-ray domain. Together with the ultrashort time resolution, high harmonics open great possibilities in the field of time-resolved soft-x-ray spectroscopy, for example of inner-shell transitions. Tailored high-harmonic spectra as generated in this work and shaped attosecond pulses will represent a multifunctional toolbox for this kind of research.}, subject = {Frequenzvervielfachung}, language = {en} } @phdthesis{Walter2006, author = {Walter, Dominik}, title = {Adaptive Control of Ultrashort Laser Pulses for High-Harmonic Generation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21975}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {The generation of high harmonics is an ideal method to convert frequencies of the infrared- or visible range into the soft x-ray range. This process demands high laser intensities that are nowadays supplied by femtosecond laser systems. As the temporal and spatial coherence properties of the laser are transferred during the conversion process, the generated high harmonics will propagate as a beam with high peak-brightness. Under ideal conditions the generation of soft-x-ray pulses shorter than one femtosecond is possible. These properties are exploited in many applications like time-resolved x-ray spectroscopy. The topic of this thesis is the generation and optimization of high harmonics. A variety of conversion setups is investigated (jet of noble gas atoms, gas-filled hollow-fiber, water microdroplets) and theoretical models present ideas to further enhance the conversion efficiency (using excited atoms or aligned molecules). In different setups the peak intensity of the fundamental laser pulses is increased by spectral broadening and subsequent temporal compression. This is achieved with the help of pulse shaping devices that can modify the spectral phase and therefore also the temporal intensity distribution of laser pulses. These pulse shaping devices are controlled by an evolutionary algorithm. With this setup not only adaptive compression of laser pulses is possible, but also the engineering of specific laser pulse shapes to optimize an experimental output. This setup was used to influence the process of high harmonic generation. It is demonstrated that the spectral distribution of the generated soft-x-ray radiation can be controlled by temporal pulse shaping. This method to tailor high harmonics is complemented by spatial shaping techniques. These findings demonstrate the realization of a tunable source of soft-x-ray radiation.}, subject = {Frequenzvervielfachung}, language = {en} } @phdthesis{Krampert2004, author = {Krampert, Gerhard}, title = {Femtosecond quantum control and adaptive polarization pulse shaping}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10304}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Adaptive Femtosekunden-Quantenkontrolle hat sich in den letzten Jahren als eine sehr erfolgreiche Methode in vielen wissenschaftlichen Gebieten wie Physik, Chemie oder Biologie erwiesen. Eine Vielzahl von Quantensystemen und insbesondere Molek{\"u}le, die eine chemische Reaktion durchlaufen, sind durch speziell geformte, Femtosekunden-Laserimpulse kontrolliert worden. Diese Methode erlaubt es, nicht nur das Quantensystem zu beobachten, sondern einen Schritt weiterzugehen und aktive Kontrolle {\"u}ber quantenmechanische Dynamik zu erlangen. In diesem Schema werden Interferenzph{\"a}nomene im Zeit- und Frequenzraum benutzt, um Selektivit{\"a}t zum Beispiel in einer chemischen Reaktion zu erhalten. Die dazu benutzten, speziell geformten Femtosekunden-Laserimpulse waren bislang nur linear polarisiert. Deshalb konnten sie nur die skalaren Eigenschaften der Licht - Materie - Wechselwirkung ausnutzen und haben so den vektoriellen Charakter des elektrischen Dipolmoments \$\vec{\mu}\$ und des elektrischen Lichtfeldes \$\vec{E}(t)\$ vernachl{\"a}ssigt. Im besonderen in der Quantenkontrolle von chemischen Reaktionen ist das untersuchte System, die Molek{\"u}le, dreidimensional und zeigt komplexe raumzeitliche Dynamik. Mit der Hilfe von polarisations-geformten Laserimpulsen ist man jetzt in der Lage dieser Dynamik, sowohl in der Zeit als auch in der r{\"a}umlichen Richtung zu folgen. Deshalb kann nun ein neues Niveau an Kontrolle in quanten-mechanischen Systemen erreicht werden. In dieser Arbeit konnte die Erzeugung von polarisations-geformten Laserimpulsen in einem optischen Aufbau verwirklicht werden. Dieser Aufbau erfordert keine interferometrische Stabilit{\"a}t, da beide Polarisationskomponenten demgleichen Strahlweg folgen. Zwei-Kanal spektrale Interferometrie wurde eingesetzt, um die Laserimpulse experimentell vollst{\"a}ndig zu charakterisieren. Um den zeitabh{\"a}ngigen Polarisationszustand dieser Pulse exakt zu beschreiben, wurde eine mathematische Darstellung entwickelt und angewandt. Die Ver{\"a}nderungen des Polarisationszustandes durch optische Elemente wurde untersucht und einige L{\"o}sungen wurden aufgezeigt, um diese Ver{\"a}nderungen zu minimieren. Der Jones Matrix Formalismus wurde dazu benutzt, alle Verzerrungen des Polarisationszustandes zwischen dem Impulsformer und dem Ort des Experiments zu ber{\"u}cksichtigen. Zugleich k{\"o}nnen die Jones Matrizen zu einer vollst{\"a}ndigen Charakterisierung der erzeugten Laserimpulse verwendet werden. Dabei wurden experimentell kalibrierte Matrizen eingesetzt. Adaptive Polarisations-Impulsformung konnte in einem rein optischen Demonstrationsexperiment gezeigt werden. Dabei wurde die computergesteuerte Polarisationsformung mit einer Lernschleife und einem experimentellen R{\"u}ckkopplungssignal kombiniert. Durch diesen selbstlernenden Algorithmus konnte der ben{\"o}tigte, linear polarisierte Laserimpuls mit m{\"o}glichst kleiner Impulsdauer gefunden werden, der f{\"u}r die effektive Erzeugung der zweiten Harmonischen in einem nichtlinearen optischen Kristall am besten geeignet ist. Durch diese R{\"u}ckkopplungsschleife war es m{\"o}glich auch noch kompliziertere Polarisationsverzerrungen, die durch eine Wellenplatte f{\"u}r eine falsche Wellenl{\"a}nge verursacht wurden, r{\"u}ckg{\"a}ngig zu machen. Die zus{\"a}tzliche Verformung der spektralen Phase durch Materialdispersion in einem 10~cm langen Glasblock konnte ebenfalls automatisch kompensiert werden. Nach diesen optischen Demonstrationsexperimenten wurde ultraschnelle Polarisationsformung angewandt, um ein Quantensystem zu kontrollieren. Die Polarisationsabh{\"a}ngigkeit der Multi-Photonen Ionisation von Kaliumdimeren konnte in einer Anrege-Abtast Messung nachgewiesen werden. Diese Abh{\"a}ngigkeit wurde dann in einem adaptiven Polarisationsformungsexperiment in einer sehr viel allgemeineren Art ausgenutzt. Statt nur einem Anrege- und Abtastlaserimpuls mit jeweils unterschiedlicher Polarisation zu benutzen, wurde der zeitabh{\"a}ngige Polarisationszustand eines geformtem Laserimpulses benutzt, um die Ionisation zu maximieren. Anstelle von einer nur quantitativen Verbesserung konnte eine qualitativ neue Art von Kontrolle {\"u}ber Quantensysteme demonstriert werden. Diese Polarisationskontrolle ist anwendbar selbst bei zuf{\"a}llig ausgerichteten Molek{\"u}len. Durch diese M{\"o}glichkeit, auf Ausrichtung der Molek{\"u}le zu verzichten, konnte mit einem wesentlich vereinfachten experimentellen Aufbau gearbeitet werden. {\"U}ber diese Polarisationskontrollexperimente hinaus wurden auch die dreidimensionalen Aspekte der Dynamik von Molek{\"u}len erforscht und kontrolliert. Die \textit{cis-trans} Photoisomerisierungsreaktion von 3,3\$'\$-Diethyl-2,2\$'\$-Thiacyanin Iodid (NK88) wurde in der fl{\"u}ssigen Phase mit transienter Absorptionsspektroskopie untersucht. Die Isomerisierungsausbeute konnte sowohl erh{\"o}ht als auch erniedrigt werden durch den Einsatz geformter Femtosekunden-Laserimpulse mit einer Zentralwellenl{\"a}nge von 400~nm, die sowohl in spektraler Phase als auch Amplitude moduliert waren. Dieses Experiment zeigt die M{\"o}glichkeit, die koh{\"a}rente Bewegung großer molekularer Gruppen durch Laserimpulse gezielt zu beeinflussen. Diese Modifikation der molekularen Geometrie kann als erster Schritt angesehen werden, kontrollierte Stereochemie zu verwirklichen. Insbesondere da im ersten Teil dieser Arbeit die Kontrolle von Molek{\"u}len mit Polarisations-geformten Impulsen gezeigt werden konnte, ist der Weg geebnet zu einer Umwandlung von einem chiralen Enantiomer in das andere, da theoretische Modelle dieser Umwandlung polarisations-geformte Laserimpulse ben{\"o}tigen. Außer diesen faszinierenden Anwendungen der Polarisationsformung sollte es nun m{\"o}glich sein den Wellenl{\"a}ngenbereich der polarisations-geformten Laserimpulse auszuweiten. Sowohl Erzeugung der zweiten Harmonischen um in den ultravioletten Bereich zu kommen als auch optische Gleichrichtung von {\"a}ußerst kurzen Femtosekunden-Impulsen um den mittleren infrarot Bereich abzudecken sind M{\"o}glichkeiten, den Wellenl{\"a}ngenbereich von polarisations-geformten Laserimpulsen zu erweitern. Mit diesen neuen Wellenl{\"a}ngen tut sich eine Vielzahl an neuen M{\"o}glichkeiten auf, Polarisationsformung f{\"u}r die Kontrolle von quantenmechanischen Systemen einzusetzen.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} }