@phdthesis{JimenezMartin2022, author = {Jim{\´e}nez Mart{\´i}n, Ovidio Manuel}, title = {Analysis of MYCN and MAX alterations in Wilms Tumor}, doi = {10.25972/OPUS-24291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242919}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. The proto-oncogene MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools. These mutations have been reported in several other cancers and remain to be functionally characterized. In order to further describe these events in WT, we screened both mutations in a large cohort of unselected WT patients, to check for an association of the mutation status with certain histological or clinical features. MYCN P44L and MAX R60Q revealed frequencies of 3 \% and 0.9 \% and also were significantly associated to higher risk of relapse and metastasis, respectively. Furthermore, to get a better understanding of the MAX mutational landscape in WT, over 100 WT cases were analyzed by Sanger sequencing to identify other eventual MAX alterations in its coding sequence. R60Q remained the only MAX CDS alteration described in WT to date. To analyze the potential functional consequences of these mutations, we used a doxycycline-inducible system to overexpress each mutant in HEK293 cells. This biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. However, we could identify a number of novel N-MYC partner proteins, several of these known for their oncogenic potential. Their correlated expression in WT samples suggested a role in WT oncogenesis and they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT.}, subject = {Nephroblastom}, language = {en} } @phdthesis{Vardapour2022, author = {Vardapour, Romina}, title = {Mutations in the DROSHA/DGCR8 microprocessor complex in high-risk blastemal Wilms tumor}, doi = {10.25972/OPUS-23140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Wilms tumor (WT) or nephroblastoma is the most common kidney tumor in childhood. Several genetic alterations have been identified in WT over the past years. However, a clear-cut underlying genetic defect has remained elusive. Growing evidence suggests that miRNA processing genes play a major role in the formation of pediatric tumors, including WT. We and others have identified the microprocessor genes DROSHA and DGCR8 as key players in Wilms tumorigenesis. Exome sequence analysis of a cohort of blastemal-type WTs revealed the recurrent hotspot mutations DROSHA E1147K and DGCR8 E518K mapping to regions important for catalyic activity and RNA-binding. These alterations were expected to affect processing of miRNA precursors, ultimately leading to altered miRNA expression. Indeed, mutated tumor samples were characterized by distinct miRNA patterns. Notably, these mutations have been observed almost exclusively in WT, suggesting that they play a specific role in WT formation. The aim of the present work was to first examine the mutation frequency of DROSHA E1147K and DGCR8 E518K in a larger cohort of WTs, and to further characterize these microprocessor gene mutations as potential oncogenic drivers for WT formation. Screening of additional 700 WT samples by allele-specific PCR revealed a high frequency of DROSHA E1147K and DGCR8 E518K mutations, with the highest incidence found in tumors of high-risk histology. DROSHA E1147K was heterozygously expressed in all cases, which strongly implies a dominant negative effect. In contrast, DGCR8 E518K exclusively exhibited homozygous expression, suggestive for the mutation to act recessive. To functionally assess the mutations of the microprocessor complex in vitro, I generated stable HEK293T cell lines with inducible overexpression of DROSHA E1147K, and stable mouse embryonic stem cell (mESC) lines with inducible overexpression of DGCR8 E518K. To mimic the homozygous expression observed in WT, DGCR8 mESC lines were generated on a DGCR8 knockout background. Inducible overexpression of wild-type or mutant DROSHA in HEK293T cells showed that DROSHA E1147K leads to a global downregulation of miRNA expression. It has previously been shown that the knockout of DGCR8 in mESCs also results in a significant downregulation of canonical miRNAs. Inducible overexpression of wild type DGCR8 rescued this processing defect. DGCR8 E518K on the other hand, only led to a partial rescue. Differentially expressed miRNAs comprised members of the ESC cell cycle (ESCC) and let-7 miRNA families whose antagonism is known to play a pivotal role in the regulation of stem cell properties. Along with altered miRNA expression, DGCR8-E518K mESCs exhibited alterations in target gene expression potentially affecting various biological processes. We could observe decreased proliferation rates, most likely due to reduced cell viability. DGCR8-E518K seemed to be able to overcome the block of G1-S transition and to rescue the cell cycle defect in DGCR8-KO mESCs, albeit not to the full extent like DGCR8-wild-type. Moreover, DGCR8-E518K appeared to be unable to completely block epithelial-to-mesenchymal transition (EMT). Embryoid bodies (EBs) with the E518K mutation, however, were still able to silence the self-renewal program rescuing the differentiation defect in DGCR8-KO mESCs. Taken together, I could show that DROSHA E1147K and DGCR8 E518K are frequent events in WT with the highest incidence in high-risk tumor entities. Either mutation led to altered miRNA expression in vitro confirming our previous findings in tumor samples. While the DROSHA E1147K mutation resulted in a global downregulation of canonical miRNAs, DGCR8 E518K was able to retain significant activity of the microprocessor complex, suggesting that partial reduction of activity or altered specificity may be critical in Wilms tumorigenesis. Despite the significant differences found in the miRNA and mRNA profiles of DGCR8 E518K and DGCR8-wild-type mESCs, functional analysis showed that DGCR8 E518K could mostly restore important cellular functions in the knockout and only slightly differed from the wild-type situation. Further studies in a rather physiological environment, such as in a WT blastemal model system, may additionally help to better assess the subtle differences between DGCR8 E518K and DGCR8 wild-type observed in our mESC lines. Together with our findings, these model systems may thus contribute to better understand the role of these microprocessor mutations in the formation of WT.}, subject = {Nephroblastom}, language = {en} } @phdthesis{Kruber2019, author = {Kruber, Philip}, title = {Functional analysis of DROSHA and SIX1 mutations in kidney development and Wilms tumor}, doi = {10.25972/OPUS-16141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161418}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Wilms tumor (WT) is the most common kidney cancer in childhood. It is a genetically heterogeneous tumor and several genetic alterations have been identified in WT patients. Recurrent mutations were found in the homeo-domain of SIX1 and SIX2 in high proliferative tumors (18.1\% of the blastemal-type tumors) as well as in the microprocessor genes DROSHA and DGCR8 (18.2\% of the blastemal-type tumors), indicating a critical role of the SIX-SALL pathway and aberrant miRNA processing in WT formation. Underlined by the fact that a significant overlap between mutations in DROSHA and SIX1 was found, indicating a synergistic effect. To characterize the in vivo role of DROSHA and SIX mutations during kidney development and their oncogenic potential, I analyzed mouse lines with either a targeted deletion of Drosha or an inducible expression of human DROSHA or SIX1 carrying a tumor-specific E1147K or Q177R mutation, respectively. The DROSHA mutation E1147K was predicted to act in a dominant negative manner. Six2-cre mediated deletion of Drosha in nephron progenitors led to a lethal phenotype with apoptotic loss of progenitor cells and early termination of nephrogenesis. Mosaic deletions via Wt1-creERT2 resulted in a milder phenotype with viable offspring that developed proteinuria after 2-4 weeks, but no evidence of tumor formation. Activation of the DROSHA-E1147K transgene via Six2-cre, on the other hand, induced a more severe phenotype with apoptosis of progenitor cells, proteinuria and glomerular sclerosis. The severely growth-retarded mice died within the first two months. This strong phenotype was consistent with the predicted dominant-negative effect of DROSHA-E1147K. Analysis of the SIX1-Q177R mutation suggested that the mutation leads to a shift in DNA binding specificity instead of a complete loss of DNA binding. This may end up in subtle changes of the gene regulatory capacity of SIX1. Six2-cre mediated activation of SIX1-Q177R lead to a viable phenotype with no alterations or shortened life span. Yet a global activation of SIX1-Q177R mediated by Zp3-cre resulted in bilateral hydronephrosis and juvenile death of the mice. To mimic the synergistic effect of DROSHA and SIX1 mutations, I generated compound mutants in two combinations: A homozygous deletion of Drosha combined with an activation of SIX1-Q177R and a compound mutant with activation of DROSHA-E1147K and SIX1-Q177R. Each mouse model variant displayed new phenotypical alterations. Mice with Six2-cre mediated homozygous deletion of Drosha and activation of SIX1-Q177R were not viable, yet heterozygous deletion of Drosha and activation of SIX1-Q177R led to hydronephrosis, proteinuria and an early death around stage P28. Combined activation of DROSHA-E1147K and SIX1-Q177R under Six2-cre resulted in proteinuria, glomerulosclerosis and lesions inside the kidney. These mice also suffered from juvenile death. Both mouse models could confirm the predicted synergistic effect. While these results underscore the importance of a viable self-renewing progenitor pool for kidney development, there was no evidence of tumor formation. This suggests that either additional alterations in mitogenic or antiapoptotic pathways are needed for malignant transformation, or premature loss of a susceptible target cell population and early lethality prevent WT formation.}, subject = {Nephroblastom}, language = {en} } @phdthesis{Kalb2006, author = {Kalb, Reinhard}, title = {Fanconi anemia and RAD50 deficiency : genetic and functional analysis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25823}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Human caretaker genes play a central role in the DNA damage response. Their defects cause a number of rare diseases which show genetic instability and increased propensity to malignant cell growth. The first of these diseases to be described in this thesis is Fanconi anemia (FA), a rare chromosome instability disorder with recessive inheritance characterized by progressive bone marrow failure, variable congenital malformations, and cancer predisposition. There are at least 13 FA complementation groups (FA-A, B, C, D1, D2, E, F, G, I, J, L, M and N), each representing mutations in a distinct gene. To date, except FANCI all the corresponding genes have been identified, denoted as FANC-A, B, C, D1/BRCA2, D2, E, F, G, J/BRIP1/BACH1, L/PHF9, M/Hef and N/PALB2.Further information is provided in chapters 1 and 2. FA cells are characterized by high sensitivity to DNA crosslinking agents and to elevated oxygen tension, but it is controversial whether they are also radiosensitive. Systematic testing (chapter 3) of primary skin fibroblast cultures from all currently known FA complementation groups revealed no increased sensitivity towards ionizing radiation (IR) and ultra-violet light (UV) when growing cells at physiological (5\% v/v) oxygen levels. Despite considerable interstrain variations FA cells showed no systematic differences to cell cultures derived from healthy controls, whereas positive controls (Ataxia telangiectasia and Cockayne syndrome) proved highly sensitive to IR or UV. Lack of radiosensitivity was also shown for the FANCD2 gene, a central gene in the FA/BRCA pathway whose mutational inactivation was studied in a large patient cohort. FA patients excluded previously from complementation groups FA-A, -C, E, F, G or L were screened for mutations in FANCD2. Even though mutation analysis of FANCD2 is complicated by the presence of pseudogene regions, biallelic FANCD2 mutations were identified in a series of 32 patients (chapter 4). The predominant types of mutations result in aberrant splicing causing exon skipping, exonisation of intronic sequence, activation of cryptic and creation of new 3´ splice sites. Many alleles were recurrent and could be associated with ethnicity. Interestingly, residual FANCD2 protein was observed in all available patient cell lines, and functionality was indicated by the presence of the monoubiquitinated FANCD2 isoform. This suggests that viability of FA-D2 patients depends on the presence of hypomorphic or leaky mutations. In chapter 5 the worldwide second FA patient belonging to complementation group FA-L is reported. Genetic analysis of patient derived fibroblasts revealed heterozygosity for a 5-bp deletion (exon 7) and a missense substitution (exon 11). In contrast to the tested fibroblasts two independent lymphoid cell lines proved resistant to the DNA crosslinking agent mitomycin C and showed proficient FANCD2 monoubiquitination. The functional reversion due to a compensating mutation in the splice acceptor site results in aberrant splicing and the restoration of the open reading frame. However, the revertant mosaicsm was restricted to the lymphatic cell lines such that there was no clinical improvement involving the other hematopoietic cell lineages, and bone marrow transplantation was required to treat the patients bone marrow failure. A direct link of Fanconi anemia to other DNA repair processes was provided by the identification of the BRCA1 interacting protein 1, BRIP1/BACH1, as a genuine FA gene (chapter 6). Genetic mapping of consanguineous Inuit families resulted in the identification of truncating mutations in BRIP1. In contrast to most of the other FA patients FANCD2 monoubiquitination was intact, linking these patients to complementation group FA-J. Biallelic mutations in BRIP1 were found in eight additional patients, one of whom was assigned previously to FA-J by somatic cell fusion. Therefore it could be shown that the postulated FANCJ gene is identical with BRIP1. This finding emphasizes the close connection between the BRCA- and the FA-family of genes, both involved in the DNA damage response. Biallelic mutations in BRCA2/FANCD1 cause a severe form of Fanconi anemia with childhood malignancies. Recently, a BRCA2 interacting protein was identified as a "partner and localizer of BRCA2" (PALB2) which confers cellular MMC resistance. A candidate gene approach revealed biallelic mutations in seven FA patients that developed solid tumors in early childhood (chapter 7). Patient cells show no or little PALB2 protein, lack of MMC induced RAD51 foci formation, and high chromosomal instability. Transduction of PALB2 cDNA complemented the MMC sensitive phenotype. Therefore, biallelic mutations in PALB2 cause a new subtype of FA, denoted as FA-N, which is connected with a high and early cancer risk. With respect to one of the most prominent but least understood caretaker gene syndromes, Fanconi anemia, this thesis has expanded our knowledge as follows: 1. refutation of major cellular radiosensitivity of FA cell lines regardless of complementation group, 2. detection of hypomorphic mutations and residual protein levels as a prerequisite for viability of the FANCD2 gene, 3. description of the worldwide second patient belonging to complementation group FA-L whose lymphocytes exhibit a novel type of somatic reversion, 4. participation in the discovery and functional characterization of two novel FA genes (FANCJ and FANCN). The last chapter of the thesis deals with a DNA repair pathway that is activated following exposure to ionizing radation. One of the central proteins responding to radiation-induced DNA damage is the product of the ATM gene which signals to a myriad of other proteins in response to DNA double strand breaks, including the NMR complex. This complex formed by the NBS1/MRE11/RAD50 proteins is thought to act as a specifi c sensor of DNA double-strand breaks. Mutations of MRE11 and NBS1 are associated with the radiation sensitivity syndromes Ataxia-telangiectasia-like disorder (AT-LD) and Nijmegen breakage syndrome (NBS), respectively. Chapter 8 presents the first ever identified patient with RAD50 deficiency due to biallelic germline mutations in the RAD50 gene. An 18-year-old German girl who has a variant form of NBS without immunodeficiency was found to be compound heterozygous for a nonsense mutation and the loss of the natural termination signal in the RAD50 gene. RAD50 protein expression was reduced to less than one tenth of normal in her fibroblasts and lymphoblastoid cells. At the nuclear level, RAD50 deficiency was associated with a high frequency of spontaneous chromatid exchanges and with the failure to form MRE11 and NBS1 nuclear foci in response to irradiation. ATM autophosphorylation, phosphorylation of p53 at serine 15 and the transcriptional induction of p21/WAF1 mRNA were reduced, and there was no evidence for Ser343 phosphorylation of NBS1 in RAD50 defi cient cells following irradiation. These defects could be complemented by expression of wildtype RAD50 cDNA. Our data shows that RAD50 modulates, like NBS1 and MRE11, the ATM-mediated DNA damage response and the G1/S cell cycle checkpoint. In addition, RAD50 appears to be required for nuclear localization of MRE11, and for NBS1 focus formation, underlining its importance for the proper function of the NMR complex. Owing to the studies performed within the framework of this thesis, RAD50 deficiency can now be added to the growing list of human caretaker gene syndromes with pronounced radiosensitivity that is distinctive at both the cellular and the clinical level from deficiencies involving the other members of the NMR complex.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Gross2002, author = {Groß, Michaela}, title = {Genomic changes in Fanconi anemia: implications for diagnosis, pathogenesis and prognosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6579}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Fanconi anemia (FA) is a genetically and phenotypically heterogenous autoso- mal recessive disease associated with chromosomal instability, progressive bone marrow failure, typical birth defects and predisposition to neoplasia. The clinical phenotype is similar in all known complementation groups (FA-A, FA-B, FA-C,FA-D1, FA-D2, FA-E, FA-F and FA-G). The cellular phenotype is characterized by hypersensitivity to DNA crosslinking agents (MMC,DEB), which is exploited as a diagnostic tool. Alltogether, the FA proteins constitute a multiprotein pathway whose precise biochemical function(s) remain unknown. FANCA, FANCC, FANCE, FANCF and FANCG interact in a nuclear complex upstream of FANCD2. Complementation group FA-D1 was recently shown to be due to biallelic mutations in the human breast cancer gene 2 (BRCA2). After DNA damage, the nuclear complex regulates monoubiquitylation of FANCD2, result- ing in targeting of this protein into nuclear foci together with BRCA1 and other DNA damage response proteins. The close connection resp. identity of the FA genes and known players of the DSB repair pathways (BRCA1, BRCA2, Rad51) firmly establishs an important role of the FA gene family in the maintenance of genome integrity. The chapter 1 provides a general introduction to the thesis describing the current knowledge and unsolved problems of Fanconi anemia. The following chapters represent papers submitted or published in scientific literature. They are succeeded by a short general discussion (chapter 7). Mutation analysis in the Fanconi anemia genes revealed gene specific mutation spectra as well as different distributions throughout the genes. These results are described in chapter 1 and chapter 2 with main attention to the first genes identified, namely FANCC, FANCA and FANCG. In chapter 2 we provide general background on mutation analysis and we report all mutations published for FANCA, FANCC and FANCG as well as our own unpublished mutations until the year 2000. In chapter 3 we report a shift of the mutation spectrum previously reported for FANCC after examining ten FA-patients belonging to complementation group C. Seven of those patients carried at least one previously unknown mutation, whereas the other three patients carried five alleles with the Dutch founder mu- tation 65delG and one allele with the Ashkenazi founder mutation IVS4+4A>T, albeit without any known Ashkenazi ancestry. We also describe the first large deletion in FANCC. The newly detected alterations include two missense mu- tations (L423P and T529P) in the 3´-area of the FANCC gene. Since the only previously described missense mutation L554P is also located in this area, a case can be made for the existence of functional domain(s) in that region of the gene. In chapter 4 we report the spectrum of mutations found in the FANCG gene com- piled by several laboratories working on FA. As with other FA genes, most muta- tions have been found only once, however, the truncating mutation, E105X, was identified as a German founder mutation after haplotype analysis. Direct compar- ison of the murine and the human protein sequences revealed two leucine zipper motifs. In one of these the only identified missense mutation was located at a conserved residue, suggesting the leucine zipper providing an essential protein-protein interaction required for FANCG function. With regard to genotype-phenotype correlations, two patients carrying a homozygous E105X mutation were seen to have an early onset of the hematological disorder, whereas the missense mutation seems to lead to a disease with later onset and milder clinical course. In chapter 5 we explore the phenomenon of revertant mosaicism which emerges quite frequently in peripheral blood cells of patients suffering from FA. We de- scribe the types of reversion found in five mosaic FA-patients belonging to com- plementation groups FA-A and FA-C. For our single FA-C-patient intragenic crossover could be proven as the mechanism of self-correction. In the remaining four patients (all of them being compound heterozygous in FANCA), either the paternal or maternal allele has reverted back to WT sequence. We also describe a first example of in vitro phenotypic reversion via the emergence of a compensat- ing missense mutation 15 amino acids downstream of the constitutional mutation explaining the MMC-resistance of the lymphoblastoid cell line of this patient. In chapter 6 we report two FA-A mosaic patients where it could be shown that the spontaneous reversion had taken place in a single hematopoietic stem cell. This has been done by separating blood cells from both patients and searching for the reverted mutation in their granulocytes, monocytes, T- and B-lymphocytes as well as in skin fibroblasts. In both patients, all hematopoietic lineages, but not the fibroblasts, carried the reversion, and comparison to their increase in erythrocyte and platelet counts over time demonstrated that reversion must have taken place in a single hematopoietic stem cell. This corrected stem cell then has been able to undergo self-renewal and also to create a corrected progeny, which over time repopulated all hematopoietic lineages. The pancytopenia of these patients has been cured due to the strong selective growth advantage of the corrected cells in vivo and the increased apoptosis of the mutant hematopoietic cells.}, subject = {Fanconi-An{\"a}mie}, language = {en} } @phdthesis{Visan2003, author = {Visan, Ion Lucian}, title = {P0 specific T-cell repertoire in wild-type and P0 deficient mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Zusammenfassung Das Myelinprotein P0 stellt eine zentrale Komponente f{\"u}r die Stabilit{\"a}t und Funktionalit{\"a}t der Myelinscheiden des peripheren Nervensystems dar. Mutationen des P0-Proteins f{\"u}hren zu verschiedenen, schwer behindernden peripheren Neuropathien wie der Charcot-Marie-Tooth- oder der Dejerine-Sotas-Erkrankung. Wir haben das Tiermodell der P0-Knock-Out-M{\"a}use verwendet, um im Vergleich zu den C57BL/6-Wildtyp-Tieren Selektionsmechanismen des P0-spezifischen T-Zell-Repertoires zu untersuchen. Dazu wurde eine Reihe von {\"u}berlappenden 20-mer-Peptiden benutzt, die die gesamte Aminos{\"a}uresequenz von P0 abdeckten. Mit Hilfe dieser Peptide wurde ein sog. „Epitop-Mapping" der H2-Ab-restringierten T-Zell-Antwort durchgef{\"u}hrt. Auf diese Weise konnte das P0-Peptid 5 (Aminos{\"a}ure 41-60) in der extrazellul{\"a}ren P0-Dom{\"a}ne als immunogene Determinante identifiziert werden. Dieses immunogene Peptid wurde dann f{\"u}r Untersuchungen der Toleranzmechanismen verwendet und zeigte, dass in P0-Knock-Out-M{\"a}usen ein hochreaktives P0-spezifisches T-Zell-Repertoire vorliegt, w{\"a}hrend es in Wildtyp-Tieren inaktiviert ist und so Selbsttoleranz erzeugt wird. Die Toleranzerzeugung in Wildtyp- und heterozygoten P0 +/- M{\"a}usen h{\"a}ngt nicht von der Gen-Dosis ab. P0 ist ein gewebespezifisches Antigen, dessen Expression normalerweise auf myelinisierende Schwann-Zellen beschr{\"a}nkt ist. Die klassischen Vorstellungen zu Toleranzmechanismen gegen{\"u}ber gewebsspezifischen Antigenen schrieben diese vor allem peripheren Immunmechanismen zu. Durch den erstmaligen Nachweis von intrathymischer Expression gewebsspezifischer Antigene wie P0 konnten wir best{\"a}tigen, dass f{\"u}r P0 offensichtlich die Expression deutlich weiter verbreitet ist, insbesondere auch auf Thymus-Stroma-Zellen. Unter Verwendung von Knochenmarkschim{\"a}ren haben wir weitere Untersuchungen durchgef{\"u}hrt, wie Knochenmarks-abstammende Zellen im Vergleich zu nicht-h{\"a}matopoetischen Zellen Toleranz gegen{\"u}ber P0 erzeugen k{\"o}nnen. Unsere Befunde zeigen, dass Knochenmarks-abh{\"a}ngige Zellen nicht ausreichen, um v{\"o}llige Toleranz zu erzeugen. Zus{\"a}tzlich wurde eine P0-Expression auf anderen Geweben wie dem Thymus ben{\"o}tigt, um komplette Toleranz zu erhalten. Wir identifizierten ein kryptisches P0-Peptid 8 und zwei subdominante P0-Peptide 1 und 3. W{\"a}hrend das Peptid 8 sowohl in Wildtyp- als auch Knock-Out-M{\"a}usen erkannt wurde, wurden die Peptide 1 und 3 in Wildtyp-M{\"a}usen nicht als Immunogen erkannt. Die genannten Peptide wurden verwendet, um eine experimentelle autoimmune Neuritis (EAN) zu erzeugen. Mit keinem der experimentellen Ans{\"a}tze konnten wir klinische Zeichen einer EAN generieren, allerdings mit dem Peptid 3 doch Entz{\"u}ndung im peripheren Nerven beobachten. Es werden zuk{\"u}nftig weitere Untersuchungen ben{\"o}tigt, um P0-spezifische T-Zell-Linien zu etablieren und so mit h{\"o}herer Effizienz eine EAN zu erzeugen. Unsere Untersuchungen sprechen daf{\"u}r, dass bei gentherapeutischen Ans{\"a}tzen bei erblichen Neuropathien vorsichtig und schrittweise vorgegangen werden muss, da mit sekund{\"a}rer Autoimmunit{\"a}t und damit Inflammation im peripheren Nerven zu rechnen ist.}, subject = {Myelin}, language = {en} } @phdthesis{Kraemer2003, author = {Kr{\"a}mer, Franziska}, title = {Molecular and Biochemical Investigations into VMD2, the gene associated with Best Disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5761}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Best disease (OMIM 153700) is an early-onset, autosomal dominant maculopathy characterized by egg yolk-like lesions in the central retina. The disease gene, the vitelliform macular dystrophy gene type 2 (VMD2), encodes a 585-aa VMD2 transmembrane protein, termed bestrophin. The protein is predominantly expressed on the basolateral side of the retinal pigment epithelium (RPE) and is thought to be involved in the transport of chloride ions. Bestrophin as well as three closely related VMD2-like proteins (VMD2L1-L3) contain multiple putative transmembrane (TM) domains and an invariant tripeptide (RFP) motif in the N-terminal half of the protein. This and the tissue-restricted expression to polarized epithelial cells are typical features of the VMD2 RFP-TM family. Best disease is predominantly caused by missense mutations, clustering in four distinct „hotspots" in the evolutionary highly conserved N-terminal region of the protein. To further augment the spectrum of mutations and to gain novel insights into the underlying molecular mechanisms, we screened VMD2 in a large cohort of affected patients. In total, nine novel VMD2 mutations were identified, raising the total number of known Best disease-related mutations from 83 to 92. Eight out of nine novel mutations are hotspot-specific missense mutations, underscoring their functional/structural significance and corroborating the dominant-negative nature of the mutations. Of special interest is a one-basepair deletion (Pro260fsX288) encoding a truncated protein with a deletion of an important functional domain (TM domain four) as well as the entire C-terminal half of bestrophin. For the first time, a nonsense mutation leading to a 50 \% non-functional protein has been identified suggesting that on rare occassions Best disease may be caused by haploinsufficiency. Molecular diagnostics strongly requires a reliable classification of VMD2 sequence changes into pathogenic and non-pathogenic types. Since the molecular pathomechanism is unclear at present, the pathogenicity of novel sequence changes of VMD2 are currently assessed in light of known mutations. We therefore initiated a publicly accessible VMD2 mutation database (http://www.uni-wuerzburg.de/humangenetics/vmd2.html) and are collecting and administrating the growing number of mutations, rare sequence variants and common polymorphisms. Missense mutations may disrupt the function of proteins in numerous ways. To evaluate the functional consequences of VMD2 mutations in respect to intracellular mislocalization and/or protein elimination, a set of molecular tools were generated. These included the establishment of an in vitro COS7 heterologous expression assay, the generation of numerous VMD2 mutations by site-directed mutagenesis as well as the development of bestrophin-specific antibodies. Surprisingly, membrane fractionation/Western blot experiments revealed no significant quantitative differences between intact and mutant bestrophin. Irrelevant of the type or location of mutation, incorporation of mutant bestrophin to the membraneous fraction was observed. Thus, impaired membrane integration may be ruled out as causative pathomechanism of Best disease consistent with a dominant-negative effect of the mutations. In a different approach, efforts were directed towards identifying and characterizing the VMD2 RFP-TM protein family in mouse. While clarification of the genomic organization of murine Vmd2 was required as basis to generate Vmd2-targeted animals (see below), the study of closely related proteins (Vmd2L1, Vmd2L2 and Vmd2L3) may provide further clues as to the function of bestrophin. For this, biocomputational as well as RT PCR analyses were performed. Moreover, the novel genes were analyzed by real time quantitative RT PCR, displaying predominant expression in testis, colon and skeletal muscle of Vmd2, Vmd2L1 and Vmd2L3 transcripts, respectively as well as in eye tissue. Interestingly, neither an ORF was determined for murine Vmd2L2 nor was the transcript present in a panel of 12 mouse tissues, suggesting that murine Vmd2L2 may represent a functionally inactive pseudogene. The murine Vmd2L3 gene, as its human counterpart, is a highly differentially spliced transcript. Finally, generating mouse models of Best disease will provide essential tools to investigate the pathophysiology of bestrophin in vivo. We have initiated the generation of two different mouse lineages, one deficient of Vmd2 (knock-out) and the other carrying a human disease-related mutation (Tyr227Asn) in the orthologous murine gene (knock-in). Genetic engineering of both constructs has been achieved and presently, four ES clones harboring the homologous recombination event (Vmd2+/-) have been isolated and are ready for the subsequent steps to generate chimeric animals. The resulting mouse lineages will represent two key models to elucidate the functional role of bestrophin in Best disease, in RPE development and physiology.}, subject = {Best-Krankheit}, language = {en} }