@article{KaiserBurekBritzetal.2018, author = {Kaiser, Mathias and Burek, Malgorzata and Britz, Stefan and Lankamp, Frauke and Ketelhut, Steffi and Kemper, Bj{\"o}rn and F{\"o}rster, Carola and Gorzelanny, Christian and Goycoolea, Francisco M.}, title = {The influence of capsaicin on the integrity of microvascular endothelial cell monolayers}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms20010122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284865}, year = {2018}, abstract = {Microvascular endothelial cells are an essential part of many biological barriers, such as the blood-brain barrier (BBB) and the endothelium of the arteries and veins. A reversible opening strategy to increase the permeability of drugs across the BBB could lead to improved therapies due to enhanced drug bioavailability. Vanilloids, such as capsaicin, are known to reversibly open tight junctions of epithelial and endothelial cells. In this study, we used several in vitro assays with the murine endothelial capillary brain cells (line cEND) as a BBB model to characterize the interaction between capsaicin and endothelial tight junctions.}, language = {en} } @article{SunBlecharzLangMałeckietal.2022, author = {Sun, Aili and Blecharz-Lang, Kinga G. and Małecki, Andrzej and Meybohm, Patrick and Nowacka-Chmielewska, Marta M. and Burek, Malgorzata}, title = {Role of microRNAs in the regulation of blood-brain barrier function in ischemic stroke and under hypoxic conditions in vitro}, series = {Frontiers in Drug Delivery}, volume = {2}, journal = {Frontiers in Drug Delivery}, issn = {2674-0850}, doi = {10.3389/fddev.2022.1027098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291423}, year = {2022}, abstract = {The blood-brain barrier (BBB) is a highly specialized structure that separates the brain from the blood and allows the exchange of molecules between these two compartments through selective channels. The breakdown of the BBB is implicated in the development of severe neurological diseases, especially stroke and traumatic brain injury. Oxygen-glucose deprivation is used to mimic stroke and traumatic brain injury in vitro. Pathways that trigger BBB dysfunction include an imbalance of oxidative stress, excitotoxicity, iron metabolism, cytokine release, cell injury, and cell death. MicroRNAs are small non-coding RNA molecules that regulate gene expression and are emerging as biomarkers for the diagnosis of central nervous system (CNS) injuries. In this review, the regulatory role of potential microRNA biomarkers and related therapeutic targets on the BBB is discussed. A thorough understanding of the potential role of various cellular and linker proteins, among others, in the BBB will open further therapeutic options for the treatment of neurological diseases.}, language = {en} } @article{BurekBurmesterSalvadoretal.2020, author = {Burek, Malgorzata and Burmester, Sandra and Salvador, Ellaine and M{\"o}ller-Ehrlich, Kerstin and Schneider, Reinhard and Roewer, Norbert and Nagai, Michiaki and F{\"o}rster, Carola Y.}, title = {Kidney Ischemia/Reperfusion Injury Induces Changes in the Drug Transporter Expression at the Blood-Brain Barrier in vivo and in vitro}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2020.569881}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216413}, year = {2020}, abstract = {Ischemia/reperfusion injury is a major cause of acute kidney injury (AKI). AKI is characterized by a sudden decrease in kidney function, systemic inflammation, oxidative stress, and dysregulation of the sodium, potassium, and water channels. While AKI leads to uremic encephalopathy, epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. To get more insights into kidney-brain crosstalk, we have created an in vitro co-culture model based on human kidney cells of the proximal tubule (HK-2) and brain microvascular endothelial cells (BMEC). The HK-2 cell line was grown to confluence on 6-well plates and exposed to oxygen/glucose deprivation (OGD) for 4 h. Control HK-2 cells were grown under normal conditions. The BMEC cell line cerebED was grown to confluence on transwells with 0.4 μm pores. The transwell filters seeded and grown to confluence with cereEND were inserted into the plates with HK-2 cells with or without OGD treatment. In addition, cerebEND were left untreated or treated with uremic toxins, indole-3-acetic acid (IAA) and indoxyl sulfate (IS). The protein and mRNA expression of selected BBB-typical influx transporters, efflux transporters, cellular receptors, and tight junction proteins was measured in BMECs. To validate this in vitro model of kidney-brain interaction, we isolated brain capillaries from mice exposed to bilateral renal ischemia (30 min)/reperfusion injury (24 h) and measured mRNA and protein expression as described above. Both in vitro and in vivo systems showed similar changes in the expression of drug transporters, cellular receptors, and tight junction proteins. Efflux pumps, in particular Abcb1b, Abcc1, and Abcg2, have shown increased expression in our model. Thus, our in vitro co-culture system can be used to study the cellular mechanism of kidney and brain crosstalk in renal ischemia/reperfusion injury.}, language = {en} } @article{SalvadorBurekFoerster2015, author = {Salvador, Ellaine and Burek, Malgorzata and F{\"o}rster, Carola Y.}, title = {Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {323}, doi = {10.3389/fncel.2015.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148255}, year = {2015}, abstract = {The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1\(\alpha\) chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-\(\alpha\) also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glutl expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.}, language = {en} } @article{NeuhausSchlundtFehrholzetal.2015, author = {Neuhaus, Winfried and Schlundt, Marian and Fehrholz, Markus and Ehrke, Alexander and Kunzmann, Steffen and Liebner, Stefan and Speer, Christian P. and F{\"o}rster, Carola Y.}, title = {Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0136221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125471}, pages = {e0136221}, year = {2015}, abstract = {Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.}, language = {en} }