@article{OPUS4-17321, title = {Search for direct top squark pair production in events with a Higgs or \(Z\) boson, and missing transverse momentum in \(\sqrt{s}\) = 13 TeV \(pp\) collisions with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {2017}, journal = {Journal of High Energy Physics}, number = {08}, organization = {The ATLAS Collaboration}, doi = {https://doi.org/10.1007/JHEP08(2017)006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173210}, year = {2017}, abstract = {A search for direct top squark pair production resulting in events with either a same-flavour opposite-sign dilepton pair with invariant mass compatible with a \(Z\) boson or a pair of jets compatible with a Standard Model (SM) Higgs boson (\(h\)) is presented. Requirements on the missing transverse momentum, together with additional selections on leptons, jets, jets identified as originating from \(b\)-quarks are imposed to target the other decay products of the top squark pair. The analysis is performed using proton-proton collision data at \(\sqrt{s}\) = 13 TeV collected with the ATLAS detector at the LHC in 2015-2016, corresponding to an integrated luminosity of 36.1 fb\(^{-1}\). No excess is observed in the data with respect to the SM predictions. The results are interpreted in two sets of models. In the first set, direct production of pairs of lighter top squarks (\(\tilde{t}_1\)) with long decay chains involving \(Z\) or Higgs bosons is considered. The second set includes direct pair production of the heavier top squark pairs (\(\tilde{t}_2\)) decaying via \(\tilde{t}_2\) → \(Z\tilde{t}_1\) or \(\tilde{t}_2\) → \(h\tilde{t}_1\). The results exclude at 95\% confidence level \(\tilde{t}_2\) and \(\tilde{t}_1\) masses up to about 800 GeV, extending the exclusion region of supersymmetric parameter space covered by previous LHC searches.}, language = {en} } @article{OPUS4-17275, title = {Searches for the \(Z\)γ decay mode of the Higgs boson and for new high-mass resonances in \({pp}\) collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {2017}, journal = {Journal of High Energy Physics}, number = {10}, organization = {The ATLAS Collaboration}, doi = {https://doi.org/10.1007/JHEP10(2017)112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172751}, year = {2017}, abstract = {This article presents searches for the \({Zγ}\) decay of the Higgs boson and for narrow high-mass resonances decaying to \(Z\)γ, exploiting \(Z\) boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb\(^{-1}\) of \({pp}\) collisions at \(\sqrt{s}=13\) recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model \({pp} → H → {Z}γ\) production and decay) upper limit on the production cross section times the branching ratio for \({pp} → H → {Z}γ\) is 6.6. (5.2) times the Standard Model prediction at the 95\% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95\% confidence level.}, language = {en} } @article{OPUS4-17272, title = {Measurement of inclusive and differential cross sections in the \(H\) → \({ZZ}^*\) → \(4{ℓ}\) decay channel in \({pp}\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {2017}, journal = {Journal of High Energy Physics}, number = {10}, organization = {The ATLAS Collaboration}, doi = {https://doi.org/10.1007/JHEP10(2017)132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172724}, year = {2017}, abstract = {Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the \(H\) → \({ZZ^*}\) → \(4{ℓ}\) decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb\(^{-1}\). The inclusive fiducial cross section in the \(H\) → \({ZZ^*}\) → \(4{ℓ}\) decay channel is measured to be 3.62 ± 0.50(stat)\(^{+0.25}_{- 0.20}\) (sys) fb, in agreement with the Standard Model prediction of 2.91 ± 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.}, language = {en} } @article{OPUS4-17256, title = {Search for top quark decays \(t → qH\), with \(H → γγ\), in \(\sqrt{s} = 13\) TeV \(pp\) collisions using the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {2017}, journal = {Journal of High Energy Physics}, number = {10}, organization = {The ATLAS Collaboration}, doi = {https://doi.org/10.1007/JHEP10(2017)129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172568}, year = {2017}, abstract = {This article presents a search for flavour-changing neutral currents in the decay of a top quark into an up-type (\({q = c, u}\)) quark and a Higgs boson, where the Higgs boson decays into two photons. The proton-proton collision data set analysed amounts to 36.1 fb\(^{-1}\) at \(\sqrt{s} = 13\) TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for, where one top quark decays into \(qH\) and the other decays into \(bW\). Both the hadronic and leptonic decay modes of the \(W\) boson are used. No significant excess is observed and an upper limit is set on the \({t → cH}\) branching ratio of 2.2 × 10\(^{-3}\) at the 95\% confidence level, while the expected limit in the absence of signal is 1.6 × 10\(^{-3}\). The corresponding limit on the \(tcH\) coupling is 0.090 at the 95\% confidence level. The observed upper limit on the \({t → uH}\) branching ratio is 2.4 × 10\(^{-3}\).}, language = {en} } @article{OPUS4-17221, title = {Evidence for the \(H\) → \({b\overline{b}}\) decay with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {24}, journal = {Journal of High Energy Physics}, organization = {The ATLAS Collaboration}, doi = {10.1007/JHEP12(2017)024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172216}, year = {2017}, abstract = {A search for the decay of the Standard Model Higgs boson into a \({b\overline{b}}\) pair when produced in association with a \(W\) or \(Z\) boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb\(^{-1}\), were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays \(Z\) → \({νν}\), \(W\) → \({ℓν}\) and \(Z\) → \({ℓℓ}\). For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. The combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90 ± 0.18(stat.)\(^{+0.21}_{-0.19}\)(syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to \(b\)-quarks in the Standard Model.}, language = {en} }