@article{StauffertNieblingLatoschik2020, author = {Stauffert, Jan-Philipp and Niebling, Florian and Latoschik, Marc Erich}, title = {Latency and Cybersickness: Impact, Causes, and Measures. A Review}, series = {Frontiers in Virtual Reality}, volume = {1}, journal = {Frontiers in Virtual Reality}, doi = {10.3389/frvir.2020.582204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236133}, year = {2020}, abstract = {Latency is a key characteristic inherent to any computer system. Motion-to-Photon (MTP) latency describes the time between the movement of a tracked object and its corresponding movement rendered and depicted by computer-generated images on a graphical output screen. High MTP latency can cause a loss of performance in interactive graphics applications and, even worse, can provoke cybersickness in Virtual Reality (VR) applications. Here, cybersickness can degrade VR experiences or may render the experiences completely unusable. It can confound research findings of an otherwise sound experiment. Latency as a contributing factor to cybersickness needs to be properly understood. Its effects need to be analyzed, its sources need to be identified, good measurement methods need to be developed, and proper counter measures need to be developed in order to reduce potentially harmful impacts of latency on the usability and safety of VR systems. Research shows that latency can exhibit intricate timing patterns with various spiking and periodic behavior. These timing behaviors may vary, yet most are found to provoke cybersickness. Overall, latency can differ drastically between different systems interfering with generalization of measurement results. This review article describes the causes and effects of latency with regard to cybersickness. We report on different existing approaches to measure and report latency. Hence, the article provides readers with the knowledge to understand and report latency for their own applications, evaluations, and experiments. It should also help to measure, identify, and finally control and counteract latency and hence gain confidence into the soundness of empirical data collected by VR exposures. Low latency increases the usability and safety of VR systems.}, language = {en} } @phdthesis{Genheimer2020, author = {Genheimer, Hannah}, title = {The acquisition of anxiety and the impact of transcutaneous vagus nerve stimulation on extinction learning in virtual contexts}, doi = {10.25972/OPUS-20639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This thesis aims for a better understanding of the mechanisms underlying anxiety as well as trauma- and stressor-related disorders and the development of new therapeutic approaches. I was first interested in the associative learning mechanisms involved in the etiology of anxiety disorders. Second, I explored the therapeutic effects of transcutaneous vagus nerve stimulation (tVNS) as a promising new method to accelerate and stabilize extinction learning in humans. For these purposes, I applied differential anxiety conditioning protocols realized by the implementation of virtual reality (VR). Here, a formerly neutral virtual context (anxiety context, CTX+) is presented whereby the participants unpredictably receive mildly aversive electric stimuli (unconditioned stimulus, US). Another virtual context (safety context, CTX-) is never associated with the US. Moreover, extinction of conditioned anxiety can be modeled by presenting the same contexts without US delivery. When unannounced USs were administered after extinction, i.e. reinstatement, the strength of the "returned" conditioned anxiety can provide information on the stability of the extinction memory. In Study 1, I disentangled the role of elemental and conjunctive context representations in the acquisition of conditioned anxiety. Sequential screenshots of two virtual offices were presented like a flip-book so that I elicited the impression of walking through the contexts. Some pictures of CTX+ were paired with an US (threat elements), but not some other screenshots of the same context (non-threat elements), nor the screenshots depicting CTX- (safety elements). Higher contingency ratings for threat compared to non-threat elements revealed elemental representation. Electro-cortical responses showed larger P100 and early posterior negativity amplitudes elicited by screenshots depicting CTX+ compared to CTX- and suggested conjunctive representation. These results support the dual context representation in anxiety acquisition in healthy individuals. Study 2 addressed the effects of tVNS on the stabilization of extinction learning by using a context conditioning paradigm. Potentiated startle responses as well as higher aversive ratings in CTX+ compared to CTX- indicate successful anxiety conditioning. Complete extinction was found in startle responses and valence ratings as no differentiation between CTX+ and CTX- suggested. TVNS did not affect extinction or reinstatement of anxiety which may be related to the inappropriate transferability of successful stimulation parameters from epilepsy patients to healthy participants during anxiety extinction. Therefore, in Study 3 I wanted to replicate the modulatory effects of tVNS on heart rate and pain perception by the previously used parameters. However, no effects of tVNS were observed on subjective pain ratings, on pain tolerance, or on heart rate. This led to the conclusion that the modification of stimulation parameters is necessary for a successful acceleration of anxiety extinction in humans. In Study 4, I prolonged the tVNS and, considering previous tVNS studies, I applied a cue conditioning paradigm in VR. Therefore, during acquisition a cue (CS+) presented in CTX+ predicted the US, but not another cue (CS-). Both cues were presented in a second context (CTX-) and never paired with the US. Afterward, participants received either tVNS or sham stimulation and underwent extinction learning. I found context-dependent cue conditioning only in valence ratings, which was indicated by lower valence for CS+ compared to CS- in CTX+, but no differential ratings in CTX-. Successful extinction was indicated by equal responses to CS+ and CS-. Interestingly, I found reinstatement of conditioned fear in a context-dependent manner, meaning startle response was potentiated for CS+ compared to CS- only in the anxiety context. Importantly, even the prolonged tVNS had no effect, neither on extinction nor on reinstatement of context-dependent cue conditioning. However, I found first evidence for accelerated physiological contextual extinction due to less differentiation between startles in CTX+ compared to CTX- in the tVNS than in the sham stimulated group. In sum, this thesis first confirms the dual representation of a context in an elemental and a conjunctive manner. Second, though anxiety conditioning and context-dependent cue conditioning paradigms worked well, the translation of tVNS accelerated extinction from rats to humans needs to be further developed, especially the stimulation parameters. Nevertheless, tVNS remains a very promising approach of memory enhancement, which can be particularly auspicious in clinical settings.}, subject = {Angst}, language = {en} } @phdthesis{Roth2020, author = {Roth, Daniel}, title = {Intrapersonal, Interpersonal, and Hybrid Interactions in Virtual Reality}, doi = {10.25972/OPUS-18862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188627}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Virtual reality and related media and communication technologies have a growing impact on professional application fields and our daily life. Virtual environments have the potential to change the way we perceive ourselves and how we interact with others. In comparison to other technologies, virtual reality allows for the convincing display of a virtual self-representation, an avatar, to oneself and also to others. This is referred to as user embodiment. Avatars can be of varying realism and abstraction in their appearance and in the behaviors they convey. Such userembodying interfaces, in turn, can impact the perception of the self as well as the perception of interactions. For researchers, designers, and developers it is of particular interest to understand these perceptual impacts, to apply them to therapy, assistive applications, social platforms, or games, for example. The present thesis investigates and relates these impacts with regard to three areas: intrapersonal effects, interpersonal effects, and effects of social augmentations provided by the simulation. With regard to intrapersonal effects, we specifically explore which simulation properties impact the illusion of owning and controlling a virtual body, as well as a perceived change in body schema. Our studies lead to the construction of an instrument to measure these dimensions and our results indicate that these dimensions are especially affected by the level of immersion, the simulation latency, as well as the level of personalization of the avatar. With regard to interpersonal effects we compare physical and user-embodied social interactions, as well as different degrees of freedom in the replication of nonverbal behavior. Our results suggest that functional levels of interaction are maintained, whereas aspects of presence can be affected by avatar-mediated interactions, and collaborative motor coordination can be disturbed by immersive simulations. Social interaction is composed of many unknown symbols and harmonic patterns that define our understanding and interpersonal rapport. For successful virtual social interactions, a mere replication of physical world behaviors to virtual environments may seem feasible. However, the potential of mediated social interactions goes beyond this mere replication. In a third vein of research, we propose and evaluate alternative concepts on how computers can be used to actively engage in mediating social interactions, namely hybrid avatar-agent technologies. Specifically, we investigated the possibilities to augment social behaviors by modifying and transforming user input according to social phenomena and behavior, such as nonverbal mimicry, directed gaze, joint attention, and grouping. Based on our results we argue that such technologies could be beneficial for computer-mediated social interactions such as to compensate for lacking sensory input and disturbances in data transmission or to increase aspects of social presence by visual substitution or amplification of social behaviors. Based on related work and presented findings, the present thesis proposes the perspective of considering computers as social mediators. Concluding from prototypes and empirical studies, the potential of technology to be an active mediator of social perception with regard to the perception of the self, as well as the perception of social interactions may benefit our society by enabling further methods for diagnosis, treatment, and training, as well as the inclusion of individuals with social disorders. To this regard, we discuss implications for our society and ethical aspects. This thesis extends previous empirical work and further presents novel instruments, concepts, and implications to open up new perspectives for the development of virtual reality, mixed reality, and augmented reality applications.}, subject = {Virtuelle Realit{\"a}t}, language = {en} }