@phdthesis{Hein2014, author = {Hein, Michael}, title = {Entwicklung computergest{\"u}tzter Methoden zur Bewertung von Docking-L{\"o}sungen und Entwurf niedermolekularer MIP-Inhibitoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101585}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Dockingbasierte Ans{\"a}tze z{\"a}hlen zu den wichtigsten Komponenten im virtuellen Screening. Sie dienen der Vorhersage der Ligandposition und -konformation in der Bindetasche sowie der Absch{\"a}tzung der Bindungsaffinit{\"a}t zum Protein. Bis heute stellt die korrekte Identifizierung proteingebundener Ligandkonformationen ein noch nicht vollst{\"a}ndig gel{\"o}stes Problem f{\"u}r Scoringfunktionen dar. Der erste Teil der vorliegenden Arbeit ist daher der Entwicklung computergest{\"u}tzter Methoden zur Bewertung von Docking-L{\"o}sungen gewidmet. Der Fokus eines ersten Teilprojektes lag auf der Ber{\"u}cksichtigung der Abs{\"a}ttigung vergrabener Wasserstoffbr{\"u}ckenakzeptoren (HBA) und -donoren (HBD) bei der Bewertung von Docking-L{\"o}sungen. Nicht-abges{\"a}ttigte vergrabene HBA und HBD stellen einen der Bindungsaffinit{\"a}t abtr{\"a}glichen Beitrag dar, der bis dato aufgrund fehlender Struktur- bzw. Affinit{\"a}tsdaten in Scoringfunktionen vernachl{\"a}ssigt wird. Im Rahmen der vorliegenden Arbeit wurde auf der Basis einer detaillierten Untersuchung zur H{\"a}ufigkeit vergrabener nicht-abges{\"a}ttigter HBA und HBD in hochaufgel{\"o}sten Protein-Ligand-Komplexen des Hartshorn-Datensatzes eine empirische Filterfunktion („vnaHB"-Filterfunktion) entwickelt, die unerw{\"u}nschte Ligandbindeposen erkennt und von der Bewertung mittels Scoringfunktionen ausschließt. Der praktische Nutzen der empirischen Filterfunktion wurde f{\"u}r die Scoringfunktionen SFCscore und DSX anhand vorgenerierter Docking-L{\"o}sungen des Cheng-Datensatzes untersucht. Die H{\"a}ufigkeitsuntersuchung zeigt, dass eine Abs{\"a}ttigung vergrabener polarer Gruppen in Protein-Ligand-Komplexen f{\"u}r eine hochaffine Protein-Ligand-Bindung notwendig ist, da vergrabene nicht-abges{\"a}ttigte HBA und HBD nur selten auftreten. Eine vollst{\"a}ndige Abs{\"a}ttigung durch entsprechende Proteinpartner wird f{\"u}r ca. 48 \% der untersuchten Komplexe beobachtet, ca. 92 \% weisen weniger als drei haupts{\"a}chlich schwache, nicht-abges{\"a}ttigte HBA bzw. HBD (z. B. Etherfunktionen) auf. Unter Einbeziehung von Wassermolek{\"u}len in die H{\"a}ufigkeitsanalyse sind sogar f{\"u}r ca. 61 \% aller Komplexe alle wasserstoffbr{\"u}ckenbindenden Gruppen abges{\"a}ttigt. Im Gegensatz zu DSX werden f{\"u}r SFCscore nach Anwendung der empirischen Filterfunktion erh{\"o}hte Erfolgsraten f{\"u}r das Auffinden einer kristallnahen Pose (≤ 2.0 {\AA} Abweichung) unter den am besten bewerteten Docking-Posen erzielt. F{\"u}r die beste SFCscore-Funktion (SFCscore::229m) werden Steigerungen dieses als „Docking Power" bezeichneten Kriteriums f{\"u}r die Top-3-Posen (Erfolgsrate f{\"u}r die Identifizierung einer kristallnahen 2.0 {\AA} Pose unter den besten drei Docking-L{\"o}sungen) von 63.1 \% auf 64.2 \% beobachtet. In einem weiteren Teilprojekt wurden repulsive Protein-Ligand-Kontakte infolge sterischer {\"U}berlappungen der Bindungspartner bei der Bewertung von Docking-L{\"o}sungen ber{\"u}cksichtigt. Die ad{\"a}quate Einbeziehung solcher repulsiver Kontakte im Scoring ist f{\"u}r die Identifizierung proteingebundener Ligandkonformationen entscheidend, jedoch aufgrund fehlender Affinit{\"a}ts- bzw. Strukturdaten problematisch. Im Rahmen der vorliegenden Arbeit wurde auf der Basis des Lennard-Jones-Potentiales des AMBER-Kraftfeldes zun{\"a}chst ein neuer Deskriptor zur Beschreibung repulsiver Kontakte („Clash"-Deskriptor) entwickelt und zur Untersuchung der H{\"a}ufigkeit ung{\"u}nstiger Protein-Ligand-Kontakte in hochaufgel{\"o}sten Protein-Ligand-Komplexen des Hartshorn-Datensatzes herangezogen. Eine aus der H{\"a}ufigkeitsverteilung abgeleitete empirische Filterfunktion („Clash"-Filterfunktion) wurde anschließend der Bewertung von Docking-L{\"o}sungen des Cheng-Datensatzes mittels der Scoringfunktionen SFCscore und DSX vorgeschaltet, um unerw{\"u}nschte Ligandbindeposen auszuschließen. Die H{\"a}ufigkeitsuntersuchung zeigt, dass vorwiegend schwache repulsive Kontakte in Protein-Ligand-Komplexen auftreten. So werden in 75 \% der Komplexe des Hartshorn-Datensatzes abstoßende Potentiale unter 0.462 kcal/mol beobachtet. Zwar betragen die ung{\"u}nstigen Beitr{\"a}ge pro Komplex f{\"u}r 50 \% aller Strukturen ca. 0.8 kcal/mol bis 2.5 kcal/mol, jedoch k{\"o}nnen diese auf Ungenauigkeiten der Kristallstrukturen zur{\"u}ckzuf{\"u}hren sein bzw. durch g{\"u}nstige Protein-Ligand-Wechselwirkungen kompensiert werden. Die Anwendung der „Clash"-Filterfunktion zeigt signifikante Verbesserungen der Docking Power f{\"u}r SFCscore. F{\"u}r die beste SFCscore-Funktion (SFCscore::frag) werden Steigerungen der Erfolgsraten f{\"u}r das Auffinden einer kristallnahen Pose unter den drei am besten bewerteten Docking-L{\"o}sungen von 61.4 \% auf 86.9 \% erzielt, was an die Docking Power der bis dato besten Scoringfunktionen aus der Literatur (z. B. DSX, GlideScore::SP) heranreicht (Docking Power (DSX): 92.6 \%; Docking Power (GlideScore::SP): 86.9 \%). Die „Clash"-Filterfunktion allein ist auch der Kombination der „Clash"- und der „vnaHB"-Filterfunktion {\"u}berlegen. Ein weiterer Schwerpunkt der vorliegenden Arbeit wurde auf die Einbeziehung von Decoy-Daten (Struktur- und Affinit{\"a}tsdaten schwach affiner und inaktiver Liganden) im Zuge der Entwicklung computergest{\"u}tzter Methoden zur Bewertung von Docking-L{\"o}sungen gelegt. Dadurch soll eine ad{\"a}quate Ber{\"u}cksichtigung ung{\"u}nstiger Beitr{\"a}ge zur Bindungsaffinit{\"a}t erm{\"o}glicht werden, die f{\"u}r die Richtigkeit und Zuverl{\"a}ssigkeit ermittelter Vorhersagen essentiell ist. In der vorliegenden Arbeit wurden bin{\"a}re Klassifizierungsmodelle zur Bewertung von Docking-L{\"o}sungen entwickelt, die die Einbeziehung von Decoy-Daten ohne die Verf{\"u}gbarkeit von Affinit{\"a}tsdaten erlauben. Der Random-Forest-Algorithmus (RF), SFCscore-Deskriptoren, der neu entwickelte „Clash"-Deskriptor, und die Decoy-Datens{\"a}tze von Cheng und Huang (Trainingsdaten) bilden die Grundlage des leistungsf{\"a}higsten Klassifizierungsmodells. Der praktische Nutzen des „besten" RF-Modells wurde nach Kombination mit der Scoringfunktion DSX anhand der Docking Power f{\"u}r das Auffinden einer kristallnahen Pose auf Rang 1 am unabh{\"a}ngigen Cheng-/Huang- (Komplexe, die nicht in den Trainingsdaten enthalten sind) und CSAR-2012-Testdatensatz untersucht. Gegen{\"u}ber einer alleinigen Anwendung von DSX werden an beiden Testdatens{\"a}tzen weitere Verbesserungen der Docking Power erzielt (Cheng-/Huang-Testdatensatz: DSX 84.24 \%, RF 87.27 \%; CSAR-2012-Testdatensatz: DSX 87.93 \%, RF 91.38 \%). Das „beste" Modell zeichnet sich durch die zuverl{\"a}ssige Vorhersage richtig-positiver Docking-L{\"o}sungen f{\"u}r einige wenige Komplexe aus, f{\"u}r die DSX keine kristallnahe Ligandkonformation identifizieren kann. Ein visueller Vergleich der jeweils am besten bewerteten RF- und DSX-Pose f{\"u}r diese Komplexe zeigt Vorteile des RF-Modells hinsichtlich der Erkennung f{\"u}r die Protein-Ligand-Bindung essentieller Wechselwirkungen. Die Untersuchung der Bedeutung einzelner SFCscore-Deskriptoren f{\"u}r die Klassifizierung von Docking-L{\"o}sungen sowie die Analyse der Misserfolge nach Anwendung des Modells geben wertvolle Hinweise zur weiteren Optimierung der bestehenden Methode. Hinsichtlich der zu bewertenden Eigenschaften ausgeglichenere Trainingsdaten, Weiterentwicklungen bestehender SFCscore-Deskriptoren sowie die Implementierung neuer Deskriptoren zur Beschreibung bis dato nicht-ber{\"u}cksichtigter Beitr{\"a}ge zur Bindungsaffinit{\"a}t stellen Ansatzpunkte zur Verbesserung dar. Der zweite Teil der vorliegenden Arbeit umfasst die Anwendung dockingbasierter Methoden im Rahmen der Entwicklung neuer Inhibitoren des „Macrophage Infectivity Potentiator"-(MIP)-Proteins von Legionella pneumophila und Burkholderia pseudomallei. Das MIP-Protein von Legionella pneumophila stellt einen wichtigen Virulenzfaktor und daher ein attraktives Zielprotein f{\"u}r die Therapie der Legionellose dar. Im Rahmen der vorliegenden Arbeit erfolgten systematische Optimierungen des Pipecolins{\"a}ure-Sulfonamides 1, des bis dato besten niedermolekularen MIP-Inhibitors (IC50 (1): 9 ± 0.7 µM). Nach Hot-Spot-Analysen der Bindetasche wurden Docking-Studien zur Auswahl aussichtsreicher Kandidaten f{\"u}r die Synthese und Testung auf MIP-Inhibition durchgef{\"u}hrt. Die Ergebnisse der Hot-Spot-Analysen zeigen g{\"u}nstige Wechselwirkungsbereiche f{\"u}r Donorgruppen und hydrophobe Substituenten in meta-Position sowie Akzeptorgruppen in para-Position des Benzylringes von 1 auf. Die Einf{\"u}hrung einer Nitrofunktion in para-Position des Benzylringes von 1 (2h) resultiert in einer erh{\"o}hten MIP-Inhibition (IC50 (2h): 5 ± 1.5 µM), was wahrscheinlich auf die Ausbildung einer zus{\"a}tzlichen Wasserstoffbr{\"u}cke zu Gly116 zur{\"u}ckzuf{\"u}hren ist. Selektivit{\"a}tsverbesserungen gegen{\"u}ber dem strukturverwandten humanen FKBP12-Protein werden insbesondere f{\"u}r das para-Aminoderivat von 1 (2n) erzielt (Selektivit{\"a}tsindex (1): 45, Selektivit{\"a}tsindex (2n): 4.2; mit Selektivit{\"a}tsindex = IC50 (MIP)/IC50 (FKBP12)). Der Ersatz des hydrophoben Trimethoxyphenylrestes von 1 durch einen Pyridinring (2s) f{\"u}hrt zu einer verbesserten L{\"o}slichkeit bei vergleichbarer MIP-Inhibition. Das MIP-Protein von Burkholderia pseudomallei spielt eine wichtige Rolle in der Pathogenese der Melioidose und stellt daher ein attraktives Zielprotein f{\"u}r die Entwicklung neuer Arzneistoffe dar. In der vorliegenden Arbeit erfolgten Optimierungen des bis dato besten niedermolekularen MIP-Inhibitors 1. Ausgehend von einem Strukturvergleich von Burkholderia pseudomallei MIP mit Legionella pneumophila MIP und einer Hot-Spot-Analyse der Burkholderia pseudomallei MIP-Bindetasche wurden Docking-Studien zur Auswahl aussichtsreicher Kandidaten f{\"u}r die Synthese und Testung auf MIP-Inhibition durchgef{\"u}hrt. Der Strukturvergleich zeigt eine hohe Homologie beider Bindetaschen. Gr{\"o}ßere konformelle {\"A}nderungen werden lediglich f{\"u}r den von Ala94, Gly95, Val97 und Ile98 geformten Bindetaschenbereich beobachtet, was unterschiedliche Optimierungsstrategien f{\"u}r 1 erforderlich macht. G{\"u}nstige Wechselwirkungsbereiche der Burkholderia pseudomallei MIP-Bindetasche finden sich einerseits f{\"u}r Donorgruppen oder hydrophobe Substituenten in para-Position des Benzylringes (Region A) von 1, andererseits f{\"u}r Akzeptor- bzw. Donorgruppen in para- bzw. meta-/para-Position des Trimethoxyphenylringes (Region B). Anhand von Docking-Studien konnten sowohl f{\"u}r Variationen in Region A als auch in Region B aussichtsreiche Kandidaten identifiziert werden. Initiale MIP-Inhibitionsmessungen der bis dato synthetisierten Derivate deuten auf erh{\"o}hte Hemmungen im Vergleich zu 1 hin. Der Ersatz des hydrophoben Trimethoxyphenylrestes von 1 durch einen Pyridinring f{\"u}hrt auch hier zu vergleichbarer MIP-Inhibition bei verbesserter L{\"o}slichkeit. Derzeit sind weitere Synthesen und Testungen aussichtsreicher Liganden durch die Kooperationspartner geplant. Die Ergebnisse der Inhibitionsmessungen sollen deren Nutzen als MIP-Inhibitoren aufzeigen und wertvolle Informationen f{\"u}r weitere Zyklen des strukturbasierten Wirkstoffdesigns liefern.}, subject = {Arzneimitteldesign}, language = {de} }