@article{GuggenbergerBley2020, author = {Guggenberger, Konstanze Viktoria and Bley, Thorsten Alexander}, title = {Imaging in Vasculitis}, series = {Current Rheumatology Reports}, volume = {22}, journal = {Current Rheumatology Reports}, number = {34}, issn = {1523-3774}, doi = {10.1007/s11926-020-00915-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232762}, year = {2020}, abstract = {Purpose of Review: Vasculitides are characterized by mostly autoimmunologically induced inflammatory processes of vascularstructures. They have various clinical and radiologic appearances. Early diagnosis and reliable monitoring are indispensable foradequate therapy to prevent potentially serious complications. Imaging, in addition to laboratory tests and physical examination,constitutes a key component in assessing disease extent and activity. This review presents current standards and some typicalfindings in the context of imaging in vasculitis with particular attention to large vessel vasculitides. Recent Findings: Recently, imaging has gained importance in the management of vasculitis, especially regarding large vesselvasculitides (LVV). Recently, EULAR (European League Against Rheumatism) has launched its recommendations concerningthe diagnosis of LVVs. Imaging is recommended as the preferred complement to clinical examination. Color-coded duplexsonography is considered the first choice imaging test in suspected giant cell arteritis, and magnetic resonance imaging isconsidered the first choice in suspected Takayasu'sarteritis. Summary: Due to diversity of clinical and radiologic presentations, diagnosis and therapy monitoring of vasculitides mayconstitute a challenge. As a result of ongoing technological progress, a variety of non-invasive imaging modalities now playan elemental role in the interdisciplinary management of vasculitic diseases.}, language = {en} } @phdthesis{Alkonyi2014, author = {Alkonyi, Balint}, title = {Differential imaging characteristics and dissemination potential of pilomyxoid astrocytomas versus pilocytic astrocytomas}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116062}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Background and Aims: PMA is a recently described rare tumor entity occuring most often in young children. Due the worse outcome of PMA-patients as compared to children with pilocytic astrocytoma (PA), it has received a grade II assignment in the latest WHO classification. Nevertheless, increasing evidence suggests that the two tumor types are indeed pathologically and genetically related. The radiological differentiation of PMAs from PAs is challenging and the limited available data could not yet provide unequivocal distinguishing imaging features. Furthermore, it is not completely clarified whether PMA cases are associated with a higher rate of CSF dissemination compared to similarly young patients with PA. The aim of our study was firstly to compare MR/CT imaging features of these tumors, and secondly, to evaluate the occurrence of CSF dissemination. Material and Methods: The study population included 15 children with PMA and 32 children with PA. A third group consisted of eight children with PAs with focal pilomyxoid features. All cases had been registered in the German multicenter SIOP/HIT-LGG trials. The initial MRIs (and CT scans, if available) at establishing the diagnosis were retrospectively analyzed according to standardized criteria and the findings compared between PMAs and PAs. Furthermore, we compared the occurrence of imaging evidences of CSF tumor dissemination between children with PMA and PA, respectively. Results: The imaging appearance of PMAs and PAs was very similar. However, PAs tended to show more frequently cystic components (p=0.03). As opposed to PAs, PMAs did not have large tumor cysts. We did not find differences with respect to tumor size and tumor margin. Gadolinium enhancement of PMAs was significantly more frequently homogeneous (p=0.006). PMAs appeared to show more often intratumoral hemorrhages (p=0.047). Furthermore, suprasellar PMAs tended to have a more homogeneus texture on T2-weighted MR images (p=0.026). Within the subgroup < 6 years of age the PMA histology tended to have a larger effect on the occurrence of CSF dissemination than the age (p=0.05 vs.0.12). Conclusions: Although the radiological appearance of PMAs and PAs is similar, some imaging features, like enhancement pattern or presence of cysts or hemorrhage may help differentiating these low-grade gliomas. Our results corroborate previous scarce data suggesting higher rate of CSF dissemination in PMAs, even in the youngest patient population. Thus, in young children with a chiasmatic-hypothalamic tumor suggestive of a PMA, an intensive search for CSF dissemination along the entire neuraxis should be performed.}, subject = {Astrozytom}, language = {en} } @phdthesis{Kapustjansky2011, author = {Kapustjansky, Alexander}, title = {In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus.}, subject = {Taufliege}, language = {en} }