@article{GaubatzEsterlechnerReichertetal.2013, author = {Gaubatz, Stefan and Esterlechner, Jasmina and Reichert, Nina and Iltzsche, Fabian and Krause, Michael and Finkernagel, Florian}, title = {LIN9, a Subunit of the DREAM Complex, Regulates Mitotic Gene Expression and Proliferation of Embryonic Stem Cells}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0062882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96922}, year = {2013}, abstract = {The DREAM complex plays an important role in regulation of gene expression during the cell cycle. We have previously shown that the DREAM subunit LIN9 is required for early embryonic development and for the maintenance of the inner cell mass in vitro. In this study we examined the effect of knocking down LIN9 on ESCs. We demonstrate that depletion of LIN9 alters the cell cycle distribution of ESCs and results in an accumulation of cells in G2 and M and in an increase of polyploid cells. Genome-wide expression studies showed that the depletion of LIN9 results in downregulation of mitotic genes and in upregulation of differentiation-specific genes. ChIP-on chip experiments showed that mitotic genes are direct targets of LIN9 while lineage specific markers are regulated indirectly. Importantly, depletion of LIN9 does not alter the expression of pluripotency markers SOX2, OCT4 and Nanog and LIN9 depleted ESCs retain alkaline phosphatase activity. We conclude that LIN9 is essential for proliferation and genome stability of ESCs by activating genes with important functions in mitosis and cytokinesis.}, language = {en} } @article{WolterHanselmannPattschulletal.2017, author = {Wolter, Patrick and Hanselmann, Steffen and Pattschull, Grit and Schruf, Eva and Gaubatz, Stefan}, title = {Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy}, series = {Oncotarget}, volume = {8}, journal = {Oncotarget}, number = {7}, doi = {10.18632/oncotarget.14466}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171851}, pages = {11160-11172}, year = {2017}, abstract = {The MuvB multiprotein complex, together with B-MYB and FOXM1 (MMB-FOXM1), plays an essential role in cell cycle progression by regulating the transcription of genes required for mitosis and cytokinesis. In many tumors, B-MYB and FOXM1 are overexpressed as part of the proliferation signature. However, the transcriptional targets that are important for oncogenesis have not been identified. Given that mitotic kinesins are highly expressed in cancer cells and that selected kinesins have been reported as target genes of MMB-FOXM1, we sought to determine which mitotic kinesins are directly regulated by MMB-FOXM1. We demonstrate that six mitotic kinesins and two microtubule-associated non-motor proteins (MAPs) CEP55 and PRC1 are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cells. Suppression of KIF23 and PRC1 strongly suppressed proliferation of MDA-MB-231 cells. The set of MMB-FOXM1 regulated kinesins genes and 4 additional kinesins which we referred to as the mitotic kinesin signature (MKS) is linked to poor outcome in breast cancer patients. Thus, mitotic kinesins could be used as prognostic biomarker and could be potential therapeutic targets for the treatment of breast cancer.}, language = {en} } @article{FetivaLissGertzmannetal.2023, author = {Fetiva, Maria Camila and Liss, Franziska and Gertzmann, D{\"o}rthe and Thomas, Julius and Gantert, Benedikt and Vogl, Magdalena and Sira, Nataliia and Weinstock, Grit and Kneitz, Susanne and Ade, Carsten P. and Gaubatz, Stefan}, title = {Oncogenic YAP mediates changes in chromatin accessibility and activity that drive cell cycle gene expression and cell migration}, series = {Nucleic Acids Research}, volume = {51}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkad107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350218}, pages = {4266-4283}, year = {2023}, abstract = {YAP, the key protein effector of the Hippo pathway, is a transcriptional co-activator that controls the expression of cell cycle genes, promotes cell growth and proliferation and regulates organ size. YAP modulates gene transcription by binding to distal enhancers, but the mechanisms of gene regulation by YAP-bound enhancers remain poorly understood. Here we show that constitutive active YAP5SA leads to widespread changes in chromatin accessibility in untransformed MCF10A cells. Newly accessible regions include YAP-bound enhancers that mediate activation of cycle genes regulated by the Myb-MuvB (MMB) complex. By CRISPR-interference we identify a role for YAP-bound enhancers in phosphorylation of Pol II at Ser5 at MMB-regulated promoters, extending previously published studies that suggested YAP primarily regulates the pause-release step and transcriptional elongation. YAP5SA also leads to less accessible 'closed' chromatin regions, which are not directly YAP-bound but which contain binding motifs for the p53 family of transcription factors. Diminished accessibility at these regions is, at least in part, a consequence of reduced expression and chromatin-binding of the p53 family member ΔNp63 resulting in downregulation of ΔNp63-target genes and promoting YAP-mediated cell migration. In summary, our studies uncover changes in chromatin accessibility and activity that contribute to the oncogenic activities of YAP.}, language = {en} }