@phdthesis{Zoeller2012, author = {Zoeller, Maria Simone}, title = {Lipidperoxidation in der inkompatiblen Pseudomonas-Arabidopsis Interaktion: Biosynthese von Pimelin- und Azelains{\"a}ure}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71614}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Biosynthese von fragmentierten Fetts{\"a}uren (kurzkettige Dicarbons{\"a}uren und deren Oxocarbons{\"a}ure-Vorstufen) ist in den meisten Pflanzen noch unklar. Wichtige, bekannte Dicarbons{\"a}uren sind Pimelins{\"a}ure (PIM) und Azelains{\"a}ure (AZA) mit den putativen Vorstufen 7-Oxo¬heptanons{\"a}ure (OHA) und 9-Oxononanons{\"a}ure (ONA). Es besteht großes Interesse die Biosynthese¬mechanismen und die Regulation der Synthese dieser Substanzen aufzukl{\"a}ren, da Fetts{\"a}ure¬fragmente an wichtigen biologischen Prozessen beteiligt sind. PIM ist eine essentielle Vorstufe von Biotin in Mikroben, Pilzen und Pflanzen. Bisher konnte die Biosynthese von PIM nur in Bakterien (E. coli und B. subtilis) aufgekl{\"a}rt werden. Es gibt keine Hinweise auf einen analogen Mechanismus in Pflanzen. Eine biologische Aktivit{\"a}t von AZA bei Pflanzen konnte erst vor kurzem beschrieben werden. Eine Forschergruppe identifizierte AZA als Metabolit, der nach Infektion mit dem Pathogen Pseudomonas syringae vermehrt im Phloemsaft von Arabidopsis vorhanden ist und der in Pflanzen eine lokale und systemische Resistenz gegen{\"u}ber dem Pathogen induziert. In Tieren sind Fetts{\"a}urefragmente ebenfalls Gegenstand aktueller Forschung. Es ist bekannt, dass eine nichtenzymatische oxidative Fragmentierung von Fetts{\"a}urehydroperoxiden in komplexen Membranlipiden als Folge von oxidativem Stress abl{\"a}uft. Phospholipide mit veresterter ONA / AZA spielen aufgrund ihrer Struktur eine Rolle als endogene Liganden bei Reaktionen des angeborenen Immunsystems. Ziel dieser Arbeit war es, die Mechanismen der Oxidation von Fetts{\"a}uren und deren Fragmentierung in Pflanzen aufzukl{\"a}ren. Weiterhin sollte die Rolle der oxidierten Fragmente in der Immunantwort der Modellpflanze Arabidopsis thaliana untersucht werden. In Pflanzen wurden fragmentierte Fetts{\"a}uren im Rahmen dieser Arbeit erstmals in komplexen Lipiden identifiziert und verschiedene Hypothesen zur Bildung von Fetts{\"a}urefragmenten experimentell {\"u}berpr{\"u}ft. Es konnte gezeigt werden, dass die Biosynthese der Fetts{\"a}urefragmente in A. thaliana ausgehend von zwei- oder dreifach unges{\"a}ttigten Fetts{\"a}uren stattfindet. 9- und 13-Lipoxygenasen (LOX1, LOX5 und LOX2) spielen dabei keine essentielle Rolle. Die Fetts{\"a}urefragmente konnten in Arabidopsis in freier Form und in komplexen Lipiden verestert (ausschließlich in Galactolipiden) detektiert werden. Applikationsexperimente zeigten, dass die Biosynthese der Fetts{\"a}urefragmente in den komplexen Lipiden auf nichtenzymatischem Wege in situ stattfindet. Dabei wird in {\"U}bereinstimmung mit den experimentellen in vitro und in vivo Daten als Reaktionsmechanismus die Dimer-Hypothese der Arbeitsgruppe um Alan Brash vorgeschlagen. In gr{\"u}nen Pflanzenteilen verl{\"a}uft die Biosynthese demzufolge in drei Schritten ab: Im ersten Schritt entsteht ein „Pool" von oxidierten Galactolipiden mit Hydroperoxid-Acylketten (mit konjugierten Dienen). Diese Hydroperoxide entstehen fortlaufend durch Oxidation der Fetts{\"a}ureacyle mittels Singulett Sauerstoff in Plastiden. Nach Infektion mit dem Pathogen P. syringae (avirulenter Stamm) wird der „Pool" von Galactolipidperoxiden durch die katalytische Einwirkung von freien Radikalen und der LOX2 erh{\"o}ht. Im zweiten Schritt findet eine Radikal-katalysierte Addition von Peroxylradikalen an Fetts{\"a}urehydroperoxide statt, wobei Lipid-Peroxid-Dimere gebildet werden. Diese instabilen Zwischenprodukte zerfallen spontan in vier Produkte, darunter zwei Aldehyd-Fragmente, ein Alkoxyradikal und ein Hydroxylradikal. Bemerkenswert ist, dass durch die Fragmentierung des Dimers weitere Radikale de novo entstehen. Im dritten Schritt k{\"o}nnen die in Galactolipiden veresterten Oxocarbons{\"a}uren zu Dicarbons{\"a}uren oxidiert werden. Hydroperoxide, die Vorl{\"a}ufer der Fetts{\"a}urefragmente, wurden in freier Form und in komplexen Lipiden verestert analysiert. Unter basalen Bedingungen liegt sowohl bei den freien, als auch bei den veresterten Hydroxyfetts{\"a}uren ein fast komplett Singulett Sauerstoff abh{\"a}ngiger Oxidationsmechanismus vor. Drei Galactolipid Hauptspezies (Monogalactosyldiacylglycerol (MGDG)-18:3-16:3, Digalactosyldiacylglycerol (DGDG)-18:3-18:3 und DGDG-18:3-16:3) sind hoch oxidiert (5 bis 9 Mol-\%, relativ zur jeweiligen Vorstufe). MGDG-18:3-18:3, ebenso wie Phosphatidylglycerol-, Phosphatidylinositol- und Triacylglycerol-Hydroxyfetts{\"a}urespezies liegen basal nur schwach oxidiert vor (< 2 Mol-\%). Nach Infektion mit dem Pathogen P. syringae kommt es zu einer massiven Lipid Biosynthese und Oxidation durch die 13-Lipoxygenase LOX2, Singulett Sauerstoff und freie Radikale. Der Oxidationsgrad der Hydroxyfetts{\"a}uren in den Galactolipiden {\"a}ndert sich kaum. Innerhalb der Triacylglycerole kommt es zu einem großen Anstieg der oxidierten Spezies (auf 12 bis 38 Mol-\%). Die Oxidation und Fragmentierung der Fetts{\"a}uren in den Galactolipiden unter basalen Bedingungen und induziert durch die Pathogenbehandlung, stellen einen wichtigen biochemischen Prozess dar, auf dem PIM und AZA entstehen.}, subject = {Schmalwand}, language = {de} }