@article{BarthHerrmannTappeetal.2012, author = {Barth, Thomas F. E. and Herrmann, Tobias S. and Tappe, Dennis and Stark, Lorenz and Gr{\"u}ner, Beate and Buttenschoen, Klaus and Hillenbrand, Andreas and Juchems, Markus and Henne-Bruns, Doris and Kern, Petra and Seitz, Hanns M. and M{\"o}ller, Peter and Rausch, Robert L. and Kern, Peter and Deplazes, Peter}, title = {Sensitive and Specific Immunohistochemical Diagnosis of Human Alveolar Echinococcosis with the Monoclonal Antibody Em2G11}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0001877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135371}, pages = {e1877}, year = {2012}, abstract = {Background: Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody. Methodology/Principal Findings: We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 mm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11. Conclusions/Significance: Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host.}, language = {en} } @article{KlingseisenEhrenschwenderHeigletal.2012, author = {Klingseisen, Laura and Ehrenschwender, Martin and Heigl, Ulrike and Wajant, Harald and Hehlgans, Thomas and Sch{\"u}tze, Stefan and Schneider-Brachert, Wulf}, title = {E3-14.7K Is Recruited to TNF-Receptor 1 and Blocks TNF Cytolysis Independent from Interaction with Optineurin}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {6}, doi = {10.1371/journal.pone.0038348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135687}, pages = {e38348}, year = {2012}, abstract = {Escape from the host immune system is essential for intracellular pathogens. The adenoviral protein E3-14.7K (14.7K) is known as a general inhibitor of tumor necrosis factor (TNF)-induced apoptosis. It efficiently blocks TNF-receptor 1 (TNFR1) internalization but the underlying molecular mechanism still remains elusive. Direct interaction of 14.7K and/or associated proteins with the TNFR1 complex has been discussed although to date not proven. In our study, we provide for the first time evidence for recruitment of 14.7K and the 14.7K interacting protein optineurin to TNFR1. Various functions have been implicated for optineurin such as regulation of receptor endocytosis, vesicle trafficking, regulation of the nuclear factor kappa B (NF-kappa B) pathway and antiviral signaling. We therefore hypothesized that binding of optineurin to 14.7K and recruitment of both proteins to the TNFR1 complex is essential for protection against TNF-induced cytotoxic effects. To precisely dissect the individual role of 14.7K and optineurin, we generated and characterized a 14.7K mutant that does not confer TNF-resistance but is still able to interact with optineurin. In H1299 and KB cells expressing 14.7K wild-type protein, neither decrease in cell viability nor cleavage of caspases was observed upon stimulation with TNF. In sharp contrast, cells expressing the non-protective mutant of 14.7K displayed reduced viability and cleavage of initiator and effector caspases upon TNF treatment, indicating ongoing apoptotic cell death. Knockdown of optineurin in 14.7K expressing cells did not alter the protective effect as measured by cell viability and caspase activation. Taken together, we conclude that optineurin despite its substantial role in vesicular trafficking, endocytosis of cell surface receptors and recruitment to the TNFR1 complex is dispensable for the 14.7K-mediated protection against TNF-induced apoptosis.}, language = {en} } @article{KneisslAbelRasbachetal.2012, author = {Kneissl, Sabrina and Abel, Tobias and Rasbach, Anke and Brynza, Julia and Schneider-Schaulies, J{\"u}rgen and Buchholz, Christian J.}, title = {Measles Virus Glycoprotein-Based Lentiviral Targeting Vectors That Avoid Neutralizing Antibodies}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0046667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134993}, pages = {e46667}, year = {2012}, abstract = {Lentiviral vectors (LVs) are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV) glycoproteins, the hemagglutinin (H), responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv) specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV) in presence of \(\alpha\)-MV antibody-positive human plasma. At plasma dilution 1: 160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60\% to 90\%. Furthermore, at plasma dilution 1: 80 an at least 4-times higher multiplicity of infection (MOI) of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against \(\alpha\)-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of a-MV antibodies interfering with entry via the natural MV receptors. These results are promising for in vivo applications of targeting vectors in humans.}, language = {en} } @article{WillemsUrlichsSeidenspinneretal.2012, author = {Willems, Coen H. M. P. and Urlichs, Florian and Seidenspinner, Silvia and Kunzmann, Steffen and Speer, Christian P. and Kramer, Boris W.}, title = {Poractant alfa (Curosurf (R)) increases phagocytosis of apoptotic neutrophils by alveolar macrophages in vivo}, series = {Respiratory Research}, volume = {13}, journal = {Respiratory Research}, number = {17}, doi = {10.1186/1465-9921-13-17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130721}, year = {2012}, abstract = {Background: Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e. g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf (R)) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages. Methods: Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages. Results: Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage. Conclusions: We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages.}, language = {en} }