@phdthesis{Waag2013, author = {Waag, Thilo}, title = {Funktionalisierung von Nanodiamanten f{\"u}r Wirkstofftransport und Knochenersatzmaterialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94597}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Ziel der vorliegenden Arbeit ist das Design, die Synthese und das anschließende Testen von Nanodiamant-Wirkstoff-Konjugaten. Daf{\"u}r m{\"u}ssen zun{\"a}chst Nanodiamanten mit geeigneten Linkersystemen funktionalisiert werden, um anschließend verschiedene pharmazeutische Wirkstoffe auf der Diamantoberfl{\"a}che zu immobilisieren. Die Wirksamkeit der so angebundenen Inhibitoren auf die verschiedenen Erreger muss anschließend in vitro und in vivo getestet werden. Auch die Art der Aufnahme der Nanodiamanten in die verschiedenen Zellen muss untersucht werden. Dazu sollen Fluoreszenzfarbstoffe, wie z.B. Oregon Green 488, auf der Diamantoberfl{\"a}che immobilisiert werden.}, subject = {Diamant}, language = {de} } @phdthesis{Lang2013, author = {Lang, Daniel}, title = {Beitr{\"a}ge zur Chemie von Nanodiamantpartikeln - Die 1,3-dipolare Cycloaddition auf modifizierten Diamantoberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85078}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Ausgangspunkt war die aus der Fulleren-Chemie bekannte Prato-Reaktion, bei welcher das Ylid in situ aus einer Aminos{\"a}ure und einem Aldehyd generiert wird und anschließend mit den C=C-Bindungen des Fullerens reagiert. Diese Funktionalisierungsmethode wurde nun auf Detonationsnanodiamant {\"u}bertragen. Um zus{\"a}tzliche π-Bindungen auf der Oberfl{\"a}che der Diamantteilchen zu schaffen, wurden diese i.Vak. bei 750 °C ausgeheizt (ND750). F{\"u}r die Immobilisierung wurde die Aminos{\"a}ure Sarcosin gew{\"a}hlt. Dodecanal und 2,4,6-Tris(hexadecyloxy)-benzaldehyd dienten jeweils als Reaktionspartner. Da bereits in fr{\"u}heren Studien gezeigt wurde, dass bei dieser Reaktion der Aldehyd selbst unspezifisch an den Diamanten binden kann und so m{\"o}glicherweise Teile der Oberfl{\"a}che f{\"u}r die spezifische Funktionalisierung blockiert, wurden f{\"u}r die weitere Betrachtung Azomethinylidvorstufen synthetisiert, die selbst nicht in der Lage sind, mit der Diamantoberfl{\"a}che zu reagieren. Diesen Zweck erf{\"u}llten N-heterocyclische Iminiumbromide, die durch Umsetzung des jeweiligen Heteroaromaten mit Bromessigs{\"a}ureethylester bzw. Bromacetonitril erhalten wurden. Alle Ylidvorstufen wurden in Gegenwart von NEt3 in situ zu den gew{\"u}nschten Dipolen umgesetzt und auf Nanodiamant immobilisiert. Neben ND750 wurden auch oxidierter und unbehandelter Diamant (NDox bzw. NDunb) sowie Diamant, der bei 900 °C i.Vak. ausgeheizt wurde (ND900), als Substrat eingesetzt, um den Einfluss der Oberfl{\"a}chenterminierung und des Graphitisierungsgrades auf das Reaktionsverhalten zu studieren. Durch Raman- und IR-Spektroskopie wurde gezeigt, dass NDox sehr viele Carbonylgruppen und wenig C=C-Doppelbindungen auf seiner Oberfl{\"a}che tr{\"a}gt. Durch das Ausheizen i.Vak wurden hingegen zus{\"a}tzliche π-Bindungen erzeugt, die bei ND900 bereits ausgedehntere Bereiche mit sp2-Kohlenstoff bilden. Der Erfolg der Immobilisierung wurde IR-spektroskopisch nachgewiesen. Die Oberfl{\"a}chenbeladung aller hergestellten Diamantaddukte wurde thermogravimetrisch bestimmt. NDox immobilisierte unabh{\"a}ngig vom Reaktionspartner stets die wenigsten Molek{\"u}le auf seiner Oberfl{\"a}che. Deren Terminierung wird von Carbonylgruppen dominiert, die grunds{\"a}tzlich schlechtere Dipolarophile darstellen als C=C-Doppelbindungen. Die {\"u}brigen Diamantmaterialien NDunb, ND750 und ND900 ließen keine eindeutige Tendenz bez{\"u}glich ihrer Reaktionsfreudigkeit erkennen. Die Oberfl{\"a}che des unbehandelten Diamanten NDunb besitzt sowohl Carbonylfunktionen als auch einzelne Bereiche graphitischen Kohlenstoffs. Diese konkurrieren vermutlich um die angebotenen Dipole, sodass die resultierenden Oberl{\"a}chenbeladungen ihrer Konjugate in einem mittleren Wertebereich liegen. Durch das Ausheizen i.Vak. werden viele Carbonylgruppen unter Ausbildung weiterer C=C-Doppelbindungen von der Oberfl{\"a}che entfernt. Bei 750 °C sind diese r{\"a}umlich sehr beschr{\"a}nkt, stark gekr{\"u}mmt und daher sehr reaktiv. Trotzdem erreichte ND750 selten eine Oberfl{\"a}chenbelegung, welche jene von NDunb {\"u}bertrifft. Die π-Bindungen auf seiner Oberfl{\"a}che sind in F{\"u}nf- und Sechsringe eingebaut, um die gekr{\"u}mmte Struktur zu realisieren. Wahrscheinlich besteht f{\"u}r die Cycloaddition an Nanodiamant eine dem Fulleren C60 {\"a}hnliche Regioselektivit{\"a}t bez{\"u}glich der angegriffen Doppelbindung. Somit stehen nicht alle frisch erzeugten C=C-Bindungen f{\"u}r die Reaktion zur Verf{\"u}gung. Bei 900 °C ist die Graphitisierung der Diamantoberfl{\"a}che weiter fortgeschritten. Es entstehen nicht nur neue C=C-Bindungen, sondern bereits gebildete Kohlenstoffkappen beginnen zu koaleszieren, wobei ausgedehntere sp2-Bereiche mit geringerer Kr{\"u}mmung und somit verminderter Reaktivit{\"a}t entstehen. So nimmt die Oberfl{\"a}chenbeladung der meisten ND900-Konjugate nicht weiter zu. Wie aus den Ergebnissen dieser Arbeit hervorgeht, ist die Funktionalisierung von Nanodiamantpartikeln nicht trivial. Sowohl die Oberfl{\"a}chenbeschaffenheit des Diamantmaterials als auch die Struktur des eingesetzten Azomethinylids beeinflussen das Immobilisierungsverhalten. Die vorliegende Arbeit zeigt aber, dass die 1,3-dipolare Cycloaddition von Azomethinyliden eine n{\"u}tzliche Methode zur Funktionalisierung von Nanodiamantpartikeln ist. Sie erm{\"o}glicht des Weiteren die simultane Einf{\"u}hrung mehrerer unterschiedlicher funktioneller Gruppen. Dies macht die untersuchte Reaktion zu einem wertvollen Werkzeug f{\"u}r die Herstellung funktionalisierter Nanodiamantmaterialien, z. B. f{\"u}r biomedizinische Anwendungen.}, subject = {Azomethinylide}, language = {de} }