@article{KnappThenWelsetal.1985, author = {Knapp, S. and Then, I. and Wels, W. and Michel, W. and Tsch{\"a}pe, H. and Hacker, J{\"o}rg and Goebel, W}, title = {Analysis of the flanking regions from different hemolysin determinants of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59374}, year = {1985}, abstract = {The haemolysin (hly) determinant of the plasmid pHly152 contains an IS2 element at 469 bp upstream of the hlyC gene. The sequence at the other (right-hand) end (RS) also shows multiple hybridization with the plasmid pHly152 and the chromosome of some Escherichia coli strains but the nucleotide sequence of this region does not reveal the typical properties of an IS element. Similar arrangements in the regions flanking the hly determinant are also found on various Hly plasmids from uropathogenic E. coli strains. Chromosomal hly determinants Iack both flanking sequences (IS2 and RS) in the immediate vicinity of the hly genes. The sequences immediately upstream of the hlyC gene have been determined from several chromosomal hly determinants and compared with the corresponding sequence of the hly determinant of the plasmid pHly152. We show that these sequences, which contain one promoter (left promoter, phlyL) in all hly determinants tested, vary considerably although common sequence elements can still be identified. In contrast, only relatively few nucleotide exchanges have been detected in the adjacent structural hlyC genes. The A + T content of the 200 bp sequence upstream of hlyC is very high (72 mol\% A + T) but even the structural hly genes show a considerably higher A + T content (about 60 mol\%) than the E. coli chromosome on average (50 mol\% A+T) suggesting that the hly determinant may not have originated in E. coli.}, subject = {Infektionsbiologie}, language = {en} } @article{SchefferKoenigHackeretal.1985, author = {Scheffer, J. and K{\"o}nig, W. and Hacker, J{\"o}rg and Goebel, W.}, title = {Bacterial adherence and hemolysin production from Escherichia coli induces histamine and leukotriene release from various cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59361}, year = {1985}, abstract = {We investigated the role of bacterial adherence and hemolysin production from Escherichia coli parent and genetically cloned strains as to their eft'ects on bistaJidne release from rat mast cells and leukotriene generation from human polymorphonuclear granulocytes. These mediators were involved in the induction of inftammatory disease processes and led, for example, to enhancement of vascular permeability, chemotaxis (leukotriene 84 [LTB4]), chemoaggregation, lysosomal enzyme release, and smooth muscle contraction, (LTC4, LTD4 , and LTE4). Washed bacteria (E. coli K-12 Ms+ my=; E. coli 536 Ms+ MR= my=) as weil as their culture supematants were analyzed. Washed E. coli K-12 (Hiy+), unlike Hly- strains, induced high amounts of histamine release from rat mast cells and chemotactic activity from human polymorphonuclear granulocytes. Significant leukotriene releasewas obtained with washed E. coli K-12 my+ strains and their bacterial culture supematants. Leukotriene induction was dependent on the amount of hemolysin activity present in the supematant. However, additional soluble factors should also be considered. The presence of hemolysin appeared to aceeierate and enhance the rate of phagocytosis of bacteria by neutrophUs. When E. coli 536 (MS+ MR= Hly=) strains were analyzed, the simultaneous presence of MR+ pili and hemolysin production led to an increase in histamine release as compared with MR- my+ strains. The genetically cloned MR+ my+ E. coli 536 strain induced higher amounts of IeukotrieDes as compared with the wUd-type strain. Our data soggest a potent role for adhesins and hemolysin as virulence factors in inducing the release of inftammatory mediators.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerSchmidtHughesetal.1985, author = {Hacker, J{\"o}rg and Schmidt, G. and Hughes, C. and Knapp, S. and Marget, M. and Goebel, W.}, title = {Cloning and characterization of genes involved in the production of mannose-resistant, neuraminidase-susceptible (X) fimbriae from an uropathogenic O6:K15:K31 Escherichia coli strain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59353}, year = {1985}, abstract = {The Qropathogenic Escherichia coli strain 536 (06:K15:H31) exhibits a mannose-resistant hemagglutination phenotype (Mrh) with bovine erythrocytes and delayed Mrh with human and guinea pig erythrocytes. Neuraminidase treatment of the erythrocytes abolishes mannose resistant hemagglutination, which is typical for X fimbriae. E. coli strain 536 synthesizes two different fimbriae (Fim phenotype) prQtein subunits, 16.5 and 22 kilodaltons in size. In addition the strain shows mannose-sensitive hemagglutination and common type I (Fl) fimbriae. The cosmid clone E. coli K-12(pANN801) and another nine independently isolated Mrh+ cosmid clones derived from a cosmid gene bank of strain 536 express the 16.5-kilodalton protein band, bot not the 22-kilodalton protein, indicating an association of the Mrh+ property with the "16.5-kilodalton fimbriae." All cosmid clones were fimbriated, and they reacted with antiserum produced against Mrh+ fimbriae of the E. coli strain HB101(pANN801) and lacked mannose-sensitive hemagglutination (Fl) funbriae. From the Mrh fim cosmid DNA pANN801, several subclones coding for hemagglutination and X fimbriae were constructed. Subclones that express both hemagglutination and fimbriae and subclones that only code for the hemagglutination antigen were isolated; subclones that only produce fimbriae were not detected. By transposon Tn5 mutagenesis we demonstrated that about 6.5 kilobases of DNA is required for the Mrh+ Fim+ phenotype, and the 1.5- to 2-kilobase DNA region coding for the structural proteiil of the fimbriae has been mapped adjacent to the region responsible for the Mrh+ phenotype. Two different regions can thus be distinguished in the adhesion determinant, one coding for hemagglutination and the other coding for fimbria formation. Transformation of plasmid DNA from these subclones into a Mrh- Fim- mutant of E. coli 536 and into a galE (rough) strain of Salmonella typhimurium yielded transformants that expressed both hemagglutination and fimbria production.}, subject = {Infektionsbiologie}, language = {en} } @article{HackerHofHughesetal.1985, author = {Hacker, J{\"o}rg and Hof, H. and Hughes, C. and Goebel, W.}, title = {Salmonella typhimurium strains carrying hemolysin plasmids and cloned hemolysin. genes from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40309}, year = {1985}, abstract = {Like all other Salmonella typhimurium strains examined, the smooth variants SF1397 (L T2) and 1366 and also their semi-rough and rough derivatives are non-haemolytic. Nevertheless, two haemolysin (Hly) plasmids of E. coli belonging to the inc groups incFllI,lv (pSU316) and incIz (pHly152) were able to be introduced into these strains by conjugation and stably maintained. A considerable percentage of the Hly+ transconjugants obtained had lost parts of their O-side chains, a result of selection for the better recipient capability of « semi-rough» variants rather than the direct influence of the Hly+ plasmids themselves. In contrast to the incF1lI1V plasmid pSU316, which exhibited higher conjugation rates with rough recipients, the incIz plasmid pHly152 was accepted best by smooth strains. Transformation with cloned E. coli haemolysin (hly) determinant was inefficient ( <10-8) for smooth strains, but 102-103 times higher for rough recipients, and was increased by the use of Salmonella-modified DNA. The transform ants and transconjugants were relatively stable and showed the same haemolytic activity as the E. coli donor strains. The virulence of the Hly+ smooth, semi-rough and rough S. typhimurium strains was tested in two mouse models, and neither the mortality rate nor the ability to multiply within the mouse spleen was influenced by the hly determinants.}, language = {en} } @article{KoenigSchefferBremmetal.1985, author = {K{\"o}nig, W and Scheffer, J. and Bremm, K. D. and Hacker, J{\"o}rg and Goebel, W.}, title = {The role of bacterial adherence and toxin production from E. coli on leukotriene generation from human polymorphonuclear granulocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40295}, year = {1985}, abstract = {No abstract available}, language = {en} }