@article{LeopoldZeilbeckWeberetal.2017, author = {Leopold, Stephanie A. and Zeilbeck, Ludwig F. and Weber, Gregor and Seitz, Roswitha and B{\"o}sl, Michael R. and J{\"a}gle, Herbert and Fuchshofer, Rudolf and Tamm, Ernst R. and Ohlmann, Andreas}, title = {Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-14423-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173494}, year = {2017}, abstract = {Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration. One-year old DBA/2J/Pax6-Norrin animals had significantly more surviving optic nerve axons than their DBA/2J littermates. The protective effect correlated with an increase in insulin-like growth factor (IGF)-1 mRNA and an enhanced Akt phosphorylation in DBA/2J/Pax6-Norrin mice. Both mouse strains developed an increase in intraocular pressure during the second half of the first year and marked degenerative changes in chamber angle, ciliary body and iris structure. The degenerations were slightly attenuated in the chamber angle of DBA/2J/Pax6-Norrin mice, which showed a β-catenin increase in the trabecular meshwork. We conclude that high levels of Norrin and the subsequent constitutive activation of Wnt/β-catenin signaling in RGC protect from glaucomatous axonal damage via IGF-1 causing increased activity of PI3K-Akt signaling. Our results identify components of a protective signaling network preventing degeneration of optic nerve axons in glaucoma.}, language = {en} } @article{BielmeierSchmittKleefeldtetal.2022, author = {Bielmeier, Christina B. and Schmitt, Sabrina I. and Kleefeldt, Nikolai and Boneva, Stefaniya K. and Schlecht, Anja and Vallon, Mario and Tamm, Ernst R. and Hillenkamp, Jost and Erg{\"u}n, S{\"u}leyman and Neueder, Andreas and Braunger, Barbara M.}, title = {Deficiency in retinal TGFβ signaling aggravates neurodegeneration by modulating pro-apoptotic and MAP kinase pathways}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms23052626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283971}, year = {2022}, abstract = {Transforming growth factor β (TGFβ) signaling has manifold functions such as regulation of cell growth, differentiation, migration, and apoptosis. Moreover, there is increasing evidence that it also acts in a neuroprotective manner. We recently showed that TGFβ receptor type 2 (Tgfbr2) is upregulated in retinal neurons and M{\"u}ller cells during retinal degeneration. In this study we investigated if this upregulation of TGFβ signaling would have functional consequences in protecting retinal neurons. To this end, we analyzed the impact of TGFβ signaling on photoreceptor viability using mice with cell type-specific deletion of Tgfbr2 in retinal neurons and M{\"u}ller cells (Tgfbr2\(_{ΔOC}\)) in combination with a genetic model of photoreceptor degeneration (VPP). We examined retinal morphology and the degree of photoreceptor degeneration, as well as alterations of the retinal transcriptome. In summary, retinal morphology was not altered due to TGFβ signaling deficiency. In contrast, VPP-induced photoreceptor degeneration was drastically exacerbated in double mutant mice (Tgfbr2\(_{ΔOC}\); VPP) by induction of pro-apoptotic genes and dysregulation of the MAP kinase pathway. Therefore, TGFβ signaling in retinal neurons and M{\"u}ller cells exhibits a neuroprotective effect and might pose promising therapeutic options to attenuate photoreceptor degeneration in humans.}, language = {en} } @article{BielmeierRothSchmittetal.2021, author = {Bielmeier, Christina B. and Roth, Saskia and Schmitt, Sabrina I. and Boneva, Stefaniya K. and Schlecht, Anja and Vallon, Mario and Tamm, Ernst R. and Erg{\"u}n, S{\"u}leyman and Neueder, Andreas and Braunger, Barbara M.}, title = {Transcriptional profiling identifies upregulation of neuroprotective pathways in retinitis pigmentosa}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms22126307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260769}, year = {2021}, abstract = {Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and M{\"u}ller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.}, language = {en} }