@phdthesis{Stichel2014, author = {Stichel, Thomas G{\"u}nther}, title = {Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren f{\"u}r die regenerative Medizin mittels Zwei-Photonen-Polymerisation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In der vorliegenden Arbeit wurde das Verfahren der Zwei-Photonen-Polymerisation von anorganisch-organischen Hybridpolymeren (ORMOCER®e) untersucht. Untersuchungsschwerpunkte bildeten dabei die theoretischen Betrachtungen der Wechselwirkung zwischen Laser und Hybridpolymer, die experimentelle Charakterisierung unterschiedlicher ORMOCER®e sowie die Aufskalierung der Technologie im Hinblick auf die Herstellung von Scaffold-Strukturen f{\"u}r die regenerative Medizin. Hierbei wurde u. a. ein innovativer Belichtungsaufbau entworfen und aufgebaut, der es erlaubt makroskopische, por{\"o}se Scaffold-Strukturen mit minimalen Strukturgr{\"o}ßen im Bereich von wenigen Mikrometern herzustellen. ORMOCER®e sind typischerweise f{\"u}r optische Anwendungen konzipiert, weisen allerdings z. T. biokompatible Eigenschaften auf. Das Material ORMOCER® MB-47 wurde von M. Beyer eigens f{\"u}r biologische Anwendungen synthetisiert. Es zeichnet sich durch Biokompatibilit{\"a}t, teilweiser Biodegradierbarkeit und hervorragende Strukturierbarkeit durch die Zwei-Photonen-Polymerisation aus. Das in dieser Arbeit verwendete Mikrostrukturierungssystem beinhaltet im Wesentlichen einen Ultrakurzpulslaser, der 325 fs Pulse bei 1030 nm emittiert (verwendet wird die zweite Harmonische bei 515 nm), ein hochpr{\"a}zises Positionierungssystem, bestehend aus drei luftgelagerten Lineartischen mit einer Reichweite von 10 cm (y-, z-Richtung) bzw. 15 cm (x-Richtung) sowie diversen Objektiven zur Fokussierung. Mit diesen Komponenten lassen sich komplexe dreidimensionale Strukturen mit minimalen Strukturgr{\"o}ßen von bis unter 100 nm erzeugen. In Kapitel 5.1 wurden theoretische Untersuchungen im Hinblick auf das Wechselwirkungsverhalten zwischen der fokalen Intensit{\"a}tsverteilung und dem Materialsystem zur Bildung eines Voxels durchgef{\"u}hrt, wobei das technische Wechselwirkungsvolumen und das chemische Wechselwirkungsvolumen samt den reaktionskinetischen Abl{\"a}ufen separat betrachtet wurde. Das technische Wechselwirkungsvolumen beschreibt die Wechselwirkung zwischen der fokalen Intensit{\"a}tsverteilung und dem Materialsystem im Rahmen eines Schwellwertprozesses, der es erlaubt Strukturdimensionen unterhalb des Beugungslimits zu realisieren. Die theoretischen Untersuchungen diesbez{\"u}glich ergaben, dass sph{\"a}rische Aberrationen die fokale Intensit{\"a}tsverteilung (Intensity-Point Spread Function (IPSF)) in Abh{\"a}ngigkeit der Belichtungskonfiguration z. T. sehr stark beeinflussen. Dar{\"u}ber hinaus wurde durch Betrachtung des Schwellwertverhaltens ein mathematischer Zusammenhang zwischen der IPSF und der Leistungsabh{\"a}ngigkeit der Charakteristik des technischen Wechselwirkungsvolumens geschaffen. Das chemische Wechselwirkungsvolumen beschreibt das tats{\"a}chliche Volumen der stattfindenden Polymerisationsreaktion. Dieses geht {\"u}ber das des technischen hinaus, was eine Folge von raumeinnehmendem Kettenwachstum im Rahmen von reaktionskinetischen Teilprozessen ist. Durch die Simulationen dieser reaktionskinetischen Abl{\"a}ufe wurde das leistungsabh{\"a}ngige, zeitliche Verhalten der Reaktionsteilnehmer (Radikale, Monomer, Photoinitiator) und des Vernetzungsgrades ermittelt. Die Simulation wurden f{\"u}r sehr kurze Belichtungszeiten (< 10 ms) auf der Basis von gekoppelten Differentialgleichungen nach Uppal \& Shiakolas durchgef{\"u}hrt. Dabei wurde der Einfluss der Teilchendiffusion sowie der Temperaturentwicklung als gering erachtet und in den Berechnungen vernachl{\"a}ssigt. Die Simulationsergebnisse zeigen, dass eine geringe Belichtungszeit nicht unbedingt durch gr{\"o}ßere Laserleistungen ausgeglichen werden kann, um einen bestimmten Vernetzungsgrad zu erzielen. Vielmehr f{\"u}hrt eine h{\"o}here Leistung zu einem raschen Verbrauch des Photoinitiators im Reaktionsvolumen und damit einem schnelleren Erliegen der Polymerisationsreaktion. Um dennoch hohe Vernetzungsgrade erzielen zu k{\"o}nnen, sind die Reaktionsgeschwindigkeitskoeffizienten der Propagation und der Terminierung k_P und k_T sowie eine ausreichende Photoinitiatorkonzentration von entscheidender Bedeutung. Je gr{\"o}ßer das Verh{\"a}ltnis k_P/k_T, desto h{\"o}here Vernetzungsgrade k{\"o}nnen auch bei kurzen Belichtungszeiten realisiert werden, wobei ein wesentlicher Teil der Polymerisation als Dunkelreaktion stattfindet. Diese Erkenntnis ist f{\"u}r die Aufskalierung der Technologie der Zwei-Photonen-Polymerisation von großer Bedeutung, welche mit einer Verk{\"u}rzung der Belichtungszeiten einhergehen muss. Des Weiteren zeigen die Simulationen, dass das spatiale Konversionsprofil eines Voxels ein lokales Minimum im Zentrum aufweisen kann. Dieses Ph{\"a}nomen tritt dann auf, wenn aufgrund der applizierten Leistung, welche gem{\"a}ß des Profils der IPSF im Zentrum am h{\"o}chsten ist, der Photoinitiator im Zentrum rasch verbraucht wird. In Kapitel 5.2 wurde die Voxelbildung, das Vernetzungsverhalten sowie die mechanischen Eigenschaften belichteter ORMOCER®e bei unterschiedlichen Parametern und Materialsystemen experimentell untersucht. An Hand von Voxelfeldern wurden die Voxelgr{\"o}ße, das Aspektverh{\"a}ltnis und das Voxelvolumen bei unterschiedlichen Laserleistungen ermittelt. Die Ergebnisse wurden mit den berechneten technischen Wechselwirkungsvolumina verglichen, wobei die Differenz von tats{\"a}chlicher Voxelgr{\"o}ße und technischem Wechselwirkungsvolumen als eine weitere charakteristische Gr{\"o}ße eingef{\"u}hrt wurde. Dabei zeigte sich, dass besonders die Voxell{\"a}nge von der L{\"a}nge des technischen Wechselwirkungsvolumens derart abweicht, dass dies nicht durch raumeinnehmendes Kettenwachstum im Rahmen der Reaktionskinetik erkl{\"a}rt werden kann. M{\"o}gliche Erkl{\"a}rungsans{\"a}tze basieren hierbei auf Wechselwirkungseffekte zwischen Lichtfeld und Material. Beispielsweise k{\"o}nnten durch den nichtlinearen optischen Kerr-Effekt oder die Polymerisation selbst Brechzahlinhomogenit{\"a}ten induziert werden, welche die Voxelbildung durch Selbstfokussierung beeinflussen. Der Unterschied der Voxelbreite, also das laterale chemische Voxelwachstum, zur Breite des technischen Wechselwirkungsvolumens wurde hingegen mit Hilfe der Reaktionskinetik erkl{\"a}rt. Dabei zeigte sich, dass dieser Unterschied sowohl vom Material selbst als auch von der Fokussieroptik abh{\"a}ngt. Des Weiteren wurde die Polymerisationsrate der unterschiedlichen Materialien aus der Auftragung des Voxelvolumens gegen{\"u}ber der Laserleistung durch lineare Approximation bestimmt. Hierbei wurde festgestellt, dass die Materialsysteme z. T. erhebliche Unterschiede aufweisen. Als das Materialsystem mit der h{\"o}chsten Polymerisationsrate hat sich das auf Acrylaten als vernetzbare Gruppen basierende OC-V in Kombination mit dem Irgacure® Oxe02 Photoinitiator herausgestellt. Aus diesem Grund wurde es f{\"u}r die Herstellung von makroskopischen Strukturen durch die Zwei-Photonen-Polymerisation bevorzugt verwendet. Die unterschiedlichen Materialien wurden ferner mit Hilfe der µ-Raman-Spektroskopie auf ihr Vernetzungsverhalten untersucht. Konkret wurden hierbei Linienfelder unter Variation der Scan-Geschwindigkeit und der Laserleistung mit Hilfe der 2PP hergestellt und vermessen. Die Vernetzungsgrade wurden semi-quantitativ aus den Spektren ermittelt. Insgesamt wurden Vernetzungsgrade im Bereich zwischen 40 \% und 60 \% gemessen, wobei mit OC-V und 2 Gew.-\% Irgacure® Ox02 die h{\"o}chsten Vernetzungsgrade erzielt wurden. Des Weiteren hat sich gezeigt, dass die Konversionsgrade f{\"u}r die jeweiligen Materialsysteme bei allen Scan-Geschwindigkeiten sich auf einem im Rahmen der Fehlergrenzen gleichem Niveau befinden. Damit kann der durch Simulationen theoretisch prognostizierte Abfall des S{\"a}ttigungskonversionsgrades mit zunehmender Scan-Geschwindigkeit mit entsprechend variierenden Belichtungszeiten nicht als verifiziert angesehen werden. Die verschiedenen Materialsysteme wurden außerdem bez{\"u}glich ihrer mechanischen Eigenschaften charakterisiert. Zu diesem Zweck wurden zylindrische Formk{\"o}rper unter verschiedenen Bedingungen (1PP, 2PP, verschiedene Photoinitiatorkonzentrationen) hergestellt und Druckfestigkeitsmessungen durchgef{\"u}hrt, sowie die Dichten und die Vernetzungsgrade aus den Formk{\"o}rpern bestimmt. Insgesamt wurden Elastizit{\"a}tsmodule im Bereich zwischen 0,40 und 1,37 GPa und Bruchfestigkeitswerte zwischen 117 bis 310 MPa ermittelt. Es konnte festgestellt werden, dass die Konzentration des Photoiniators das Vernetzungsverhalten und damit die mechanischen Eigenschaften der Formk{\"o}rper stark beeinflusst. W{\"a}hrend geringe Konzentrationen zu geringeren Vernetzungsgraden und niedrigen Elastizit{\"a}tsmodulen f{\"u}hrten, zeigten die Formk{\"o}rper h{\"o}herer Konzentration ein deutlich spr{\"o}deres Verhalten mit h{\"o}heren Vernetzungsgraden und Elastizit{\"a}tsmodulen. Das h{\"o}chste Elastizit{\"a}tsmodul wurde an Hand von Formk{\"o}rpern vermessen, welche aus OC-V mit 2 Gew.-\% Irgacure® Ox02 hergestellt wurden. Dar{\"u}ber hinaus wurde festgestellt, dass sich die mechanischen Eigenschaften von durch 2PP hergestellten Formk{\"o}rpern durch die applizierte Laserleistung beeinflussen lassen. Die Ursache hierf{\"u}r ist, dass durch die Laserleistung die Voxelgr{\"o}ße und damit der {\"U}berlapp zwischen den Voxeln eingestellt werden kann. Im Bereich des {\"U}berlapps findet dann eine Doppelbelichtung des Materials statt, was zu h{\"o}heren Vernetzungsgraden f{\"u}hren kann. Außerdem wurden durch die 2PP bei hinreichend großen Belichtungsleistungen auch Formk{\"o}rper realisiert, welche h{\"o}here Elastizit{\"a}tsmodule und Bruchfestigkeitswerte aufwiesen als K{\"o}rper, welche durch UV-Belichtung hergestellt wurden. Die Aufskalierung der Zwei-Photonen-Technologie wurde in Kapitel 5.3 behandelt. Neben einer ausf{\"u}hrlichen Diskussion zu den Herausforderungen diesbez{\"u}glich, wurden zwei Belichtungsstrategien zur Herstellung von makroskopischen Scaffold-Strukturen eingesetzt und optimiert. Hierbei ist insbesondere der Badaufbau hervorzuheben, der es erlaubte Strukturen von prinzipiell unbegrenzter H{\"o}he mit Hilfe der Zwei-Photonen-Polymerisation herzustellen. Eine wesentliche Herausforderung der Aufskalierung der 2PP ist die Beschleunigung des Prozesses. Aus den Betrachtungen geht hervor, dass f{\"u}r eine gravierende Beschleunigung der 2PP-Strukturierung neben der Scan-Geschwindigkeit auch das Beschleunigungsverm{\"o}gen des Positionierungssystems entscheidend ist. Des Weiteren sind auch Parallelisierungsmethoden mit z. B. diffraktiven optischen Elementen n{\"o}tig, um ausreichende Prozessgeschwindigkeiten zu erzielen. Der Standardaufbau mit Luftobjektiven wurde dazu verwendet millimetergroße Strukturen mit hoher Qualit{\"a}t aus ORMOCER®en herzustellen. Auch wenn die maximale Strukturh{\"o}he durch den Arbeitsabstand des Objektivs beschr{\"a}nkt ist, hat sich gezeigt, dass dieser Aufbau sich f{\"u}r die einfache Herstellung von millimetergroßen Test-Scaffold-Strukturen eignet, welche z. B. f{\"u}r Zellwachstumsversuche oder mechanische Belastungstest eingesetzt werden k{\"o}nnen. Das biodegradierbare MB-47 wurde hierbei ebenfalls erfolgreich eingesetzt und u. a. f{\"u}r die Herstellung von Drug-Delivery-Strukturen verwendet. Der Badaufbau, basierend auf einem Materialbad mit durchsichtigem Boden, einem darin befindlichen und in der Vertikalen (z-Richtung) beweglichen Substrathalter sowie einer Belichtung von unten durch eine sich in der Ebene bewegende Fokussieroptik, wurde verwendet um eine Freiheitsstatue mit 2 cm H{\"o}he sowie millimetergroße Scaffold-Strukturen mit Porengr{\"o}ßen im Bereich von 40 bis 500 µm in ORMOCER-V zu realisieren. Weitere Strukturierungsresultate mit z. T. anwendungsbezogenem Hintergrund sind die Geh{\"o}rkn{\"o}chelchen des menschlichen Ohrs in Lebensgr{\"o}ße, ein Scaffold in Form eines Steigb{\"u}gels des menschlichen Ohrs, Test-Scaffold-Strukturen f{\"u}r mechanische oder biologische Untersuchungen sowie Drug-Delivery Strukturen. Es wurden Bauraten von bis zu 10 mm^3/h erzielt. Bez{\"u}glich der Prozessgeschwindigkeit und Strukturh{\"o}he wurde bei Weitem noch nicht das Potential des luftgelagerten Positioniersystems ausgesch{\"o}pft. Daf{\"u}r bedarf es einer Gewichtsoptimierung des bestehenden Belichtungsaufbau, um h{\"o}here Beschleunigungswerte und Scan-Geschwindigkeiten realisieren zu k{\"o}nnen. Unter Annahme einer effektiven Gewichtsoptimierung und der damit verbundenen Erh{\"o}hung der Beschleunigung auf 10 m/s^2 k{\"o}nnte eine Baurate bei einer Scan-Geschwindigkeit von 225 mm/s und einem Slice- und Hatch-Abstand von 15 und 10 µm von etwa 60 mm^3/h erzielt werden. Im Rahmen der Aufskalierung wurde ebenfalls der experimentelle Einsatz von diffraktiven optischen Elementen zur Fokus-Multiplikation untersucht. Die Experimente wurden mit Hilfe eines Elements durchgef{\"u}hrt, welches eine 2 x 2 Punkte-Matrix neben der ungebeugten 0. Ordnung bereitstellt und Bestandteil eines experimentellen Setups war, welches aus Linsen, Blenden und einem Objektiv zur Fokussierung bestand. Mit Hilfe der erzeugten Spot-Matrix wurden zum einen simultan vier Drug-Delivery-Strukturen hergestellt und zum anderen einzelne Scaffold-Strukturen realisiert. In jedem Fall wurde eine Beschleunigung des Prozess bzw. eine Erh{\"o}hung der Polymerisationsrate um den Faktor 4 f{\"u}r die verwendeten Parameter erreicht. Bei der Herstellung der Scaffolds wurden zwei unterschiedliche Strategien verfolgt. W{\"a}hrend zum einen die Periodizit{\"a}t der inneren Scaffold-Struktur auf die Fokusabst{\"a}nde angepasst und damit simultan vier aneinandergereihte Einheitszellen hergestellt wurden, konnte zum anderen auch demonstriert werden, dass durch die geschickte Bewegung der Fokusse eine ineinander verschobene Struktur m{\"o}glich ist. Der Vorteil der letzteren Strategie ist, dass auf diese Weise eine komplette Schicht gescannt werden kann und damit hohe Scan-Geschwindigkeiten realisiert werden k{\"o}nnen. Die erzielten Bauraten waren dennoch nicht gr{\"o}ßer als die Bauraten, die mit einem einzelnen Spot im Rahmen des Standardaufbaus oder des Badaufbaus erreicht wurden. Hierf{\"u}r bedarf es weiterer Optimierung der Parameter und des Setups. Transmittiert fokussiertes Licht eine Grenzfl{\"a}che zweier Medien mit unterschiedlichen Brechungsindizes, dann tritt sph{\"a}rische Aberration auf, welche sich durch die Verbreiterung des Fokus besonders in axiale Richtung bemerkbar macht. Da diese im Rahmen der verwendeten Belichtungsstrategien die Strukturierungsergebnisse nachweislich beeintr{\"a}chtigen, wurden experimentelle Untersuchungen sowie Optimierungsroutinen diesbez{\"u}glich durchgef{\"u}hrt. Im Zusammenhang mit dem Standardaufbau wurde eine Leistungsanpassung w{\"a}hrend der Strukturierung vorgenommen. Auf diese Weise wurde erreicht, dass bei variabler Fokustiefe im Material die maximale Intensit{\"a}t trotz sph{\"a}rischer Aberration konstant gehalten wurde, wodurch sich die strukturelle Homogenit{\"a}t der Scaffolds entlang der axialen Richtung (optische Achse) deutlich verbesserte. Des Weiteren wurde der Badaufbau dazu verwendet, die axiale Intensit{\"a}tsverteilung in-situ f{\"u}r diskrete Fokustiefen unter der Verwendung eines Objektivs mit der NA von 0,60 abzubilden. Zu diesem Zweck wurde aus hergestellten Voxelfeldern eine Voxelfeldfunktion ermittelt und mit der axialen IPSF korreliert. Dabei wurde angenommen, dass sich das chemische Wechselwirkungsvolumen vernachl{\"a}ssigbar gering vom technischen Wechselwirkungsvolumen unterscheidet. Die experimentellen Ergebnisse zeigten deutlich die f{\"u}r sph{\"a}rische Aberrationen typischen Nebenmaxima auf. Die Lage bzw. Abst{\"a}nde dieser entsprachen in guter {\"U}bereinstimmung den jeweiligen Simulationen. Schließlich wurde noch die sph{\"a}rische Aberration durch den Korrekturring der Objektive f{\"u}r verschiedene Deckglasdicken korrigiert. Die resultierende IPSF wurde ebenfalls mit Hilfe des Badaufbaus abgebildet, wobei keinerlei Nebenmaxima gefunden werden konnten. Die Breite des Hauptmaximums konnte deutlich verringert werden. Zusammengefasst l{\"a}sst sich sagen, dass im Rahmen dieser Arbeit erhebliche Fortschritte bei der Aufskalierung der 2PP zur Erzeugung von Scaffold-Strukturen f{\"u}r die regenerative Medizin erzielt wurden. Die erreichten Strukturdimensionen und die Bauraten {\"u}bertreffen alle bis dato bekannten Ergebnisse. Dabei wurden auch durch theoretische Betrachtungen und experimentellen Methoden grundlegende Erkenntnisse {\"u}ber die Reaktionsdynamik der durch die Zwei-Photonen-Absorption initiierten Polymerisationsreaktion gewonnen. Nichtsdestotrotz sind einige Fragestellungen offen sowie Problematiken des Prozesses vorhanden, die f{\"u}r eine Realisierung von makroskopischen Scaffold-Strukturen gel{\"o}st werden m{\"u}ssen. So sind die realisierten Bauraten noch zu gering, um in angemessener Zeit makroskopische Scaffolds-Strukturen herzustellen, welche deutlich gr{\"o}ßer als 1 cm^3 sind. Aus diesem Grund m{\"u}ssen weitere Verbesserungen bez{\"u}glich der Scan-Geschwindigkeit sowie des Einsatzes von diffraktiven optischen Elementen zur Erh{\"o}hung der Polymerisationsrate erzielt werden. Da bei der Verwendung von Multi-Spot-Arrays, welche mit Hilfe gew{\"o}hnlicher diffraktiver optischer Elemente erzeugt wurden, die Realisierung von beliebigen und detaillierten {\"a}ußeren Scaffold-Formen eingeschr{\"a}nkt ist, empfiehlt es sich den Einsatz von Spatial Light-Modulatoren zu verfolgen. Diese fungieren als dynamisch modulierbares DOE, mit dem einzelne Spots gezielt ein- und ausgeblendet und Spotabst{\"a}nde dynamisch variiert werden k{\"o}nnen. Schließlich ist es vorstellbar, den Spatial Light-Modulator mit dem Badaufbau zu kombinieren, um uneingeschr{\"a}nkte, große Strukturen in annehmbarer Zeit mit hochaufgel{\"o}sten Details herstellen zu k{\"o}nnen. Dieses Vorgehen bedarf allerdings noch der tiefgreifenden Untersuchung der Potentiale des Spatial Light-Modulators. Dar{\"u}ber hinaus weisen die theoretischen und experimentellen Untersuchungen zur Reaktionskinetik darauf hin, dass die Voxelentstehung ein komplexer Prozess ist, der m{\"o}glicherweise auch durch nichtlineare optische Wechselwirkungseffekte abseits der Zwei-Photonen-Absorption beeinflusst wird. Daher sind hier weitere Untersuchungen und Berechnungen zu empfehlen, um z. B. den Einfluss einer intensit{\"a}tsabh{\"a}ngigen Brechzahl auf die Voxelbildung quantifizieren zu k{\"o}nnen. Entsprechende Ergebnisse k{\"o}nnten schließlich dazu dienen, dass im Rahmen dieser Arbeit entwickelte Modell zur Voxelbildung, welches auf der getrennten Betrachtung von technischen und chemischen Wechselwirkungsvolumen basiert, zu verbessern. Ein leistungsf{\"a}higes Modell, welches die Voxelbildung in Abh{\"a}ngigkeit des Materials und der Fokussieroptik pr{\"a}zise vorhersagen kann, w{\"a}re f{\"u}r das Erzielen optimaler Strukturierungsergebnissen ein Gewinn.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{Wittmann2014, author = {Wittmann, Katharina}, title = {Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm 'replace with alike', adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Werner2014, author = {Werner, Katharina Julia}, title = {Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{WeyhmuellerReboredo2014, author = {Weyhm{\"u}ller Reboredo, Jenny}, title = {Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108477}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Meniskus, ein scheibenf{\"o}rmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kr{\"a}fte und Druck im Kniegelenk gleichm{\"a}ßig verteilt, St{\"o}ße d{\"a}mpft sowie der Kraft{\"u}bertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, ver{\"a}ndern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erh{\"o}hte Belastung der Gelenkfl{\"a}chen Arthrose. Arthrose ist weltweit die H{\"a}ufigste aller Gelenkerkrankungen. Der Erhalt der k{\"o}rperlichen Leistungsf{\"a}higkeit und Mobilit{\"a}t bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen z{\"a}hlen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am h{\"a}ufigsten vorkommende Krankheitsart dar. W{\"a}hrend Risse in den {\"a}ußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgef{\"a}ßsystem spontan heilen k{\"o}nnen, k{\"o}nnen sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsf{\"a}higkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplin{\"a}res Forschungsfeld, in dem Gewebe außerhalb des K{\"o}rpers generiert werden. Schl{\"u}sselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Tr{\"a}gerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazellul{\"a}re Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die nat{\"u}rliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskr{\"a}fte w{\"a}hrend der in vitro Reifungsphase des Gewebes, zur Verf{\"u}gung stellen. Das Gewebekonstrukt wurde auf Basis nat{\"u}rlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich prim{\"a}rer Zellen, die sp{\"a}ter direkt vom Patienten gewonnen werden k{\"o}nnen und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestm{\"o}glich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskul{\"a}ren Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein St{\"u}ck Schweinedarm mit azellularisierten Gef{\"a}ßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zus{\"a}tzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalit{\"a}ten in den Konstrukten. Aufgrund einer nur geringen Verf{\"u}gbarkeit von MZ wurden Kulturans{\"a}tze mit alternativen Zellquellen, den MSZ, durchgef{\"u}hrt. Daf{\"u}r erfolgte zun{\"a}chst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt f{\"u}nf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. W{\"a}hrend die Kollagen Typ I Fasern in den {\"a}ußeren Schichten keiner Ausrichtung zugeh{\"o}ren, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war f{\"u}r den Aufbau einer solchen Kollagen-Tr{\"a}gerstruktur das nat{\"u}rliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiw{\"o}chigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung f{\"u}r klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem k{\"o}nnen neben Perfusion der Gef{\"a}ßsysteme zus{\"a}tzlich Kompressionskr{\"a}fte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ w{\"a}hrend der in vitro Kultur {\"u}ber mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld f{\"u}r den neuartigen Bioreaktor ist seine Verwendung als Pr{\"u}ftestsystem f{\"u}r die Optimierung und Qualit{\"a}tssicherung von Gewebekonstrukten.}, subject = {Tissue Engineering}, language = {de} }