@phdthesis{Lutz2018, author = {Lutz, Peter}, title = {Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159057}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Transition metal oxides (TMO) represent a highly interesting material class as they exhibit a variety of different emergent phenomena including multiferroicity and superconductivity. These effects result from a significant interplay of charge, spin and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies (OV) at the surface of certain d0 TMO release free charge carriers and prompt the formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a prototypical and promising d0 TMO. It displays ferroelectricity at room temperature and features several structural phase transitions, from cubic over tetragonal (at room temperature) and orthorhombic to rhombohedral. The spontaneous electric polarization in BaTiO3 can be used to manipulate the physical properties of adjacent materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied in great detail, the microscopic electronic structure at the surface and interface of BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and the structural phase transitions in BaTiO3. This thesis investigates the electronic structure of different BaTiO3 systems by means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of BaTiO3 single crystals is systematically characterized and compared to theoretical band structure calculations. A finite p-d hybridization of titanium and oxygen states was inferred at the high binding energy side of the valence band. In BaTiO3 thin films, the occurrence of spectral weight near the Fermi level could be linked to a certain amount of OV at the surface which effectively dopes the host system. By a systematic study of the metallic surface states as a function of temperature and partial oxygen pressure, a model was established which reflects the depletion and accumulation of charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile behavior of these surface states. The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface of BaTiO3-based heterostructures. Therefore, the interface electronic structure of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by also including a thickness dependent characterization. The ARPES results, indeed, confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify the energy position and the Fermi vector of the spin-split states. This observation is associated with the appearance of an interface state which was observed for very low film thickness. Both spectral findings suggest a significant coupling between the Bi films and BaTiO3.}, subject = {Bariumtitanat}, language = {en} } @article{FiedlerElKarehEremeevetal.2014, author = {Fiedler, Sebastian and El-Kareh, Lydia and Eremeev, Sergey V. and Tereshchenko, Oleg E. and Seibel, Christoph and Lutz, Peter and Kokh, Konstantin A. and Chulkov, Evgueni V. and Kuznetsova, Tatyana V. and Grebennikov, Vladimir I. and Bentmann, Hendrik and Bode, Matthias and Reinert, Friedrich}, title = {Defect and structural imperfection effects on the electronic properties of BiTeI surfaces}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {075013}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/7/075013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119467}, year = {2014}, abstract = {The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ~100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability.}, language = {en} }