@phdthesis{Baluapuri2021, author = {Baluapuri, Apoorva}, title = {Molecular Mechanisms of MYC's impact on Transcription Elongation}, doi = {10.25972/OPUS-24380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Expression of the MYC oncoprotein, which binds the DNA at promoters of most transcribed genes, is controlled by growth factors in non-tumor cells, thus stimulating cell growth and proliferation. Here in this thesis, it is shown that MYC interacts with SPT5, a subunit of the RNA polymerase II (Pol II) elongation factor DSIF. MYC recruits SPT5 to promoters of genes and is required for its association with Pol II. The transfer of SPT5 is mediated by CDK7 activity on TFIIE, which evicts it from Pol II and allows SPT5 to bind Pol II. MYC is required for fast and processive transcription elongation, consistent with known functions of SPT5 in yeast. In addition, MYC increases the directionality of promoters by stimulating sense transcription and by suppressing the synthesis of antisense transcripts. The results presented in this thesis suggest that MYC globally controls the productive assembly of Pol II with general elongation factors to form processive elongation complexes in response to growth-factor stimulation of non-tumour cells. However, MYC is found to be overexpressed in many tumours, and is required for their development and progression. In this thesis it was found that, unexpectedly, such overexpression of MYC does not further enhance transcription but rather brings about squelching of SPT5. This reduces the processivity of Pol II on selected set of genes that are known to be repressed by MYC, leading to a decrease in growth-suppressive gene transcription and uncontrolled tumour growth}, language = {en} }