@article{BachmannSchrederEngelhardtetal.2021, author = {Bachmann, Friederike and Schreder, Martin and Engelhardt, Monika and Langer, Christian and Wolleschak, Denise and M{\"u}gge, Lars Olof and D{\"u}rk, Heinz and Sch{\"a}fer-Eckart, Kerstin and Blau, Igor Wolfgang and Gramatzki, Martin and Liebisch, Peter and Grube, Matthias and Metzler, Ivana v. and Bassermann, Florian and Metzner, Bernd and R{\"o}llig, Christoph and Hertenstein, Bernd and Khandanpour, Cyrus and Dechow, Tobias and Hebart, Holger and Jung, Wolfram and Theurich, Sebastian and Maschmeyer, Georg and Salwender, Hans and Hess, Georg and Bittrich, Max and Rasche, Leo and Brioli, Annamaria and Eckardt, Kai-Uwe and Straka, Christian and Held, Swantje and Einsele, Hermann and Knop, Stefan}, title = {Kinetics of renal function during induction in newly diagnosed multiple myeloma: results of two prospective studies by the German Myeloma Study Group DSMM}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers13061322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234139}, year = {2021}, abstract = {Background: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. Results: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3\% at baseline to 1.9\% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49\% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined "renal complete response (CRrenal)" was achieved in 17/25 (68\%) pts after VCD, 12/19 (63\%) after RAD, and 14/27 (52\%) after VRd (p = 0.4747). Conclusions: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment "renal fitness" in the latter group.}, language = {en} } @article{HartmannReisslandMaieretal.2021, author = {Hartmann, Oliver and Reissland, Michaela and Maier, Carina R. and Fischer, Thomas and Prieto-Garcia, Cristian and Baluapuri, Apoorva and Schwarz, Jessica and Schmitz, Werner and Garrido-Rodriguez, Martin and Pahor, Nikolett and Davies, Clare C. and Bassermann, Florian and Orian, Amir and Wolf, Elmar and Schulze, Almut and Calzado, Marco A. and Rosenfeldt, Mathias T. and Diefenbacher, Markus E.}, title = {Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.641618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230949}, year = {2021}, abstract = {Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.}, language = {en} } @article{EngelRudeliusSlawskaetal.2016, author = {Engel, Katharina and Rudelius, Martina and Slawska, Jolanta and Jacobs, Laura and Abhari, Behnaz Ahangarian and Altmann, Bettina and Kurutz, Julia and Rathakrishnan, Abirami and Fern{\´a}ndez-S{\´a}iz, Vanesa and Brunner, Andr{\"a} and Targosz, Bianca-Sabrina and Loewecke, Felicia and Gloeckner, Christian Johannes and Ueffing, Marius and Fulda, Simone and Pfreundschuh, Michael and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Keller, Ulrich and Jost, Philipp J. and Rosenwald, Andreas and Peschel, Christian and Bassermann, Florian}, title = {USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma}, series = {EMBO Molecular Medicine}, volume = {8}, journal = {EMBO Molecular Medicine}, doi = {10.15252/emmm.201506047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165016}, pages = {851-862}, year = {2016}, abstract = {The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC-induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X-linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B-cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event-free survival in patients treated with spindle poison-containing chemotherapy. Accordingly, aggressive B-cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ-Myc lymphoma model. Together, we specify the USP9X-XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B-cell lymphoma.}, language = {en} }